
CSCI 3104 Notes
Zoe Farmer

February 26, 2024

Contents
1 Complexity 2

1 .1 Atomic Operations . 2
1 .2 Big-O Notation . 2
1 .3 Big-Θ Notation . 2

2 Sorting 2
2 .1 Divide and Conquer . 2

2 .1.1 Recurrence Relations . 3
2 .2 Bubblesort . 3
2 .3 Quicksort . 3

2 .3.1 Loop Invariants . 4
2 .3.2 Running Time . 4
2 .3.3 Randomizing . 4

3 Greedy Algorithms 5

4 Recurrence Relations 5
4 .1 Characteristic Polynomial . 5
4 .2 Unrolling . 5
4 .3 Master Theorem . 5

5 Basic Probability 5

6 Knapsack Problem 6
6 .1 Easy Version . 6
6 .2 Hard Version (0-1 Knapsack Problem) . 6

7 Dynamic Programming 7

1

CSCI 3104 Notes Zoe Farmer

1 Complexity
1 .1 Atomic Operations
Any fundamental operation that is performed: +, ∗, /,−, << . >>,<,>,=, assignment.

1 .2 Big-O Notation
Big-O is a method to asymptotically analyze an equation or algorithm. When we analyze a
process we’re concerned about the complexity of two things: time and space.

These could be represented by two different equations{
Time → f(n)

Space → g(n)

and further summarized by a limit of the ratio1

lim
n→∞

f(n)

g(n)

Theorem 1. Let f(n) and g(n) be functions N → R. We say f = O(g), which means if
there is c > 0 such that f(n) ≤ c · g(n).

1 .3 Big-Θ Notation
Big-Θ notation is the original notation and all others are merely spin-offs.

Theorem 2. A function (or algorithm), f(n), is Big-Θ of g(n) if (∃c1 > 0, c2 > 0,∀n >
n0 > 0)[c1g(n) ≤ f(n) ≤ c2g(n)]. We denote this f(n) = Θ(g(n)).

2 Sorting
2 .1 Divide and Conquer
This is a classic strategy to solve complex problems.

1. Divide the problem into n sub-problems
2. Conquer each sub-problem individually
3. Combine the sub-problems back into the original problem.
A typical divide and conquet algorithm will look as such.

1 def fun(n)
2 if n == trivial:
3 solve and return
4 else
5 partA = fun(n_)
6 partB = fun(n - n_)
7 AB = combine(A, B)
8 return AB

1This ratio can be reduced by L’Hospital’s Rule until we determine the constant ratio

CSCI 3104 2 Clauset

CSCI 3104 Notes Zoe Farmer

This code will create a binary tree with depth n containing trivial problems on the left
branches. This is commonly known as tail recursion. The problem is being divided, but
very slowly - removing a small part of the problem every step.

2 .1.1 Recurrence Relations

Generally of the form

T (n) = a︸︷︷︸
Number of Recursive Calls

·
Cost of Recursion︷ ︸︸ ︷

T (g(n)︸︷︷︸
Method of Reducing the Problem

)+ f(n)︸︷︷︸
Cost of Non-Recursive Work

If the problem is divided in twain it will generate a binary tree with approximate depth
of log2(n).

2 .2 Bubblesort
While a pair of entries is out of order, loop and fix each pair each step.

2 .3 Quicksort
Pick a pivot and sort the items in relation to the pivot.

1 # precon: A is an array to be sorted, p >= 1, r <= |A|
2 # postcon: A[p:r] is sorted
3 def quicksort(A, p, r):
4 if p < r:
5 q = partition(A, p, r)
6 quicksort(A, p, q - 1)
7 quicksort(A, q - 1, r)
8
9 # precon: A[p:r] is input, p >= 1, r <= |A|

10 # A[r] is the pivot
11 # postcon: A_ is A after function
12 # A_[p:r] contains some elements in A[p:r]
13 # A_[p:res - 1] <= A[r], A_[res] - A[r]
14 # A_[res + 1:r] > A[r]
15 def partition(A, p, r):
16 x = A[r] # Choose Pivot
17 i = p - 1
18 for (j=p; j <= r - 1; j++):
19 if A[j] <= x:
20 i++
21 exchange(A[i], A[j])
22 exchange(A[i + 1], A[r])
23 return i + 1

CSCI 3104 3 Clauset

CSCI 3104 Notes Zoe Farmer

2 .3.1 Loop Invariants

These are claims that hold at the beginning of each loop.
1. If p ≤ k ≤ i, then A[k] ≤ x

2. If i+ 1 ≤ k ≤ j − 1 then A[k] > x

3. If k = r then A[k] = x

Verify that 1 holds at the beginning of the loop.
Verify that if it holds at the (i− 1)th iteration, then it holds at the ith iteration.
Verify that if it holds when the loop terminates, then A[p, r] is partitioned.

2 .3.2 Running Time

The worst case for this algorithm is when we have a very unbalanced tree.

T (n) = T (n− 1) + Θ(n) ⇒ Θ(n2)

Therefore, the best case occurs when we have a perfectly balanced binary tree.

T (n) = 2 · T
(n
2

)
+Θ(n) ⇒ Θ()

2 .3.3 Randomizing

As you can see, there is a very distinct case where the list results in an O(n2) algorithm.
We solve this by randomizing the input list.

The average case of randomized quicksort is the same as quicksort’s average case.

1 def random_qs(A, p, r):
2 q = random_partition(A, p, r)
3 random_qs(A, p, q - 1)
4 random_qs(A, q + 1, r)
5
6 def random_partition(A, p, r)
7 i = random.int(p, r) # Use a random pivot
8 swap(A[i], A[r])
9 x = A[r]

10 i = p - 1
11 for (j=p; j <= r - 1; j++):
12 if A[j] <= x:
13 i += 1
14 exchange(A[i], A[j])
15 exchange(A[i + 1], A[r])
16 return i + 1

CSCI 3104 4 Clauset

CSCI 3104 Notes Zoe Farmer

3 Greedy Algorithms
This algorithms arise from cases where we wish to select the largest continuous time, area,
space, etc. so that the regions don’t overlap.2 We can achieve this with greedy algorithms.

This strategy works by selecting the largest items first, and then selecting by minumum
conflict.

1. Order all intervals by end time. O(n log(n))

2. Check each interval based on the overlap. O(n)
The formal problem is stated as such: We have a set of n intervals, {1, 2, 3, · · · , n},

and we have a start and finish time. We call a subset of intervals compatible if they don’t
overlap.

1 # Input: intervals
2 # Output: Maximal set of compatible intervals
3 # Let I = all intervals
4 # O = empty list
5 def greedy_by_finish_time(I):
6 while I is not empty:
7 choose i from I with smallest finish time f(i)
8 add to O
9 delete all intervals from I that are not compatible with i

10 return O

4 Recurrence Relations
4 .1 Characteristic Polynomial
4 .2 Unrolling
Substitute the next equation in the current.

4 .3 Master Theorem
There are three cases to consider.

T (n) = a · T (n/b) + f(n)
f(n) = O

(
nlogb(a−ϵ)

)
⇒ T (n) = Θ

(
nlogb(a)

)
f(n) = O

(
nlogb(a)

)
⇒ T (n) = Θ

(
nlogb(a) · log(a)

)
f(n) = Ω

(
nlogb(a+ϵ)

)
a · f(n/b) ≤ c · f(n)

}
⇒ T (n) = Θ(f(n))

5 Basic Probability
The expectation of a discrete event, E(x) is defined as

2Also known as the interval scheduling problem

CSCI 3104 5 Clauset

CSCI 3104 Notes Zoe Farmer

E(x) =
∑
x

xPr(X = x)

For continuous probabilities, we use

E(x) =

∫
x

xPr(x) dx

If there are two random variables, in order to identify the probability of both events
occurring can be found by multiplication if and only if they are mutually exclusive.

Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y)

We can also use indicator random variables to count how many events occur.

I(A) =

{
1 if event A occurs
0 otherwise

Multiple random variables can be combined using addition.

E

(∑
i

Xi

)
=
∑
i

E(Xi)

6 Knapsack Problem
6 .1 Easy Version
We have some capacity k that limits our endeavours. We then have a set of items with two
properties, their values, and their weight.{

Value: {v1, v2, . . . , vn} =
∑n

i=1 fi · vi
Weight: {w1, w2, . . . , wn} =

∑n
i=1 fi · wi ≤ k

We also have a fraction fi ∈ [0, 1] that represents the fraction of the items we take. We
wish to maximize the total value of items that we take, while satisfying the total weight.

To solve this problem, we should look at the items’ value density, i.e. the items with the
least weight, but maximum value, vn

wn
. In other words, take the greedy approach, that is to

take the best items until we can only take a fractional item, in which case we stop. This
greedy approach is optimal, and takes O(n log(n)) time to complete.

6 .2 Hard Version (0-1 Knapsack Problem)
In the hard version, our fraction adjusts to fi ∈ {0, 1}. This essentially means that we are
no longer allowed to take fractional items, are are limited to boolean choices. This runs in
O(n · k) time using a dynamic programming solution.

For our solution, we need to use dynamic programming to construct a table.

v0,0 v0,1 · · · v0,w−1 v0,w

CSCI 3104 6 Clauset

CSCI 3104 Notes Zoe Farmer

Initially we set v[0, w] = 0 where 0 ≤ w ≤ k, followed by setting v[i, w] = −∞ where
w < 0, v[i, w] ≡ the maximum value of items [1, i] with combined weight at most w. Now
we can start establishing entries in our table. For each item in v[i, w] we have two options.
1. Take i if wi ≤ w also if the optimal solution v[i, w] includes i. Leaving it gives the optimal
solution v[i− 1, w − wi].
2. Leave i if the optimal solution for items {1, . . . , i− 1} with weight w is v[i− 1, w].

These two rules can be rewritten, giving us

v[i, w] = max(v[i− 1, w], vi + v[i− 1, w − wi]) for

{
1 ≤ i ≤ n

0 ≤ w ≤ k

7 Dynamic Programming
In dynamic programming we have some semblance of a subproblem structure, where as we
solve each subproblem it helps us solve the next sub-problem. In other words, we remember
the solutions to previous subproblems and thereby build solutions to the next problems off
of what we remember3 from previous problems. In almost every dynamic programming
solution we build a table of solutions.4

3Memoization
4See PS3, Dumbledore’s Algorithm for an example of Memoization

CSCI 3104 7 Clauset

	Complexity
	Atomic Operations
	Big-O Notation
	Big- Notation

	Sorting
	Divide and Conquer
	Recurrence Relations

	Bubblesort
	Quicksort
	Loop Invariants
	Running Time
	Randomizing

	Greedy Algorithms
	Recurrence Relations
	Characteristic Polynomial
	Unrolling
	Master Theorem

	Basic Probability
	Knapsack Problem
	Easy Version
	Hard Version (0-1 Knapsack Problem)

	Dynamic Programming

