Problem Set One

Zoe Farmer

February 26, 2024

1. For each claim, determine whether the statement is True or False. Justify your answer.
(a) $n+3=O\left(n^{3}\right) \rightarrow$ True. According to the definition of Big-O notation, $f=O(g)$ if

$$
(\exists c, k>0, x>k)[|f(x)| \leq c|g(x)|]
$$

Therefore

$$
|n+3| \leq c\left|n^{3}\right|
$$

and the statement is valid.
(b) $3^{2 n}=O\left(3^{n}\right) \rightarrow$ False. Again, using the previous definition of Big-O notation we see that

$$
\left|3^{2 n}\right| \not \leq c\left|3^{n}\right|
$$

(c) $n^{n}=o(n!) \rightarrow$ False. We can use the definition of little-o notation which states that f is little-o of g if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

Therefore this statement turns to

$$
\lim _{x \rightarrow \infty} \frac{n^{n}}{n!}=\infty
$$

Therefore the statement is invalid.
(d) $\frac{1}{3 n}=o(1) \rightarrow$ True. We then use the above definition again and apply L'Hospital's Rule to determine the value of the limit.

$$
\lim _{x \rightarrow \infty} \frac{1}{3 n} \rightarrow \lim _{x \rightarrow \infty} \frac{0}{3}=0
$$

(e) $\ln ^{3}(n)=\Theta\left(\log _{2}^{3}(n)\right) \rightarrow$ False 1 We can use the definition of Big-O notation to determine that

$$
\ln ^{3}(n)=O\left(\log _{2}^{3}(n)\right)
$$

[^0]because $\left|\ln ^{3}(n)\right| \leq c\left|\log _{2}^{3}(n)\right|$, however
$$
\log _{2}^{3}(n) \neq O\left(\ln ^{3}(n)\right)
$$
because $\left|\log _{2}^{3}(n)\right| \not \leq c\left|\ln ^{3}(n)\right|$. Therefore the statement is false.
2. Simplify each of the following expressions.
(a)
$$
\frac{d}{d t}\left(3 t^{4}+1 / 3 t^{3}-7\right) \rightarrow 12 t^{3}+t^{2}
$$
(b)
$$
\sum_{i=0}^{k} 2^{i} \rightarrow 1+2+4+\cdots+2^{k} \rightarrow 2^{k+1}-1
$$
(c)
$$
\Theta\left(\sum_{k=1}^{n} \frac{1}{k}\right) \rightarrow H_{n}
$$

Where H_{n} is the $n^{t h}$ Harmonic number.
3. T is a balanced binary search tree storing n values. Describe an $O(n)$-time algorithm that takes input T and returns an array containing the same values in ascending order.
(a) Below is the code to perform this operation.

```
Balanced Binary Search Tree to Ascending Array
asc = [] # List to populate
class Node: # The structure of any given node
    left = None # Class object of left node
    right = None # Class object of right node
    value = None # Value of node
def tree_to_array(head): # Function to scrape in asc order
    if head.left != None: # If left is node
        tree_to_array(head.left) # Take left
        head.left = None # Destroy traversed result
    if head.right != None: # Else take right
        asc.append(head.value) # Take next smallest val
        tree_to_array(head.right) # Go right
        head.right = None # Destroy traversed result
    if head.left is None and # If both sides are empty
                head.right is None:
        try:
            if (head.value >=
                        asc[len(asc) - 1]): # If larger than prev
                        asc.append(head.value) # This value is our next smallest
        except IndexError: # Only enter if list is empty
            asc.append(head.value) # This value is our next smallest
head = construct_tree(random=true) # Create a random balanced tree
print(tree_to_array(head)) # Print our end array
```

4. Acme Corp. has asked Professor Flitwick to develop a faster algorithm for their core business. The current algorithm runs in $f(n)$ time. (For concreteness, assume it takes $f(n)$ microseconds to solve a problem of size exactly n.) Flitwick believes he can develop a faster algorithm, which takes only $g(n)$ time, but developing it will take t days. Acme only needs to solve a problem of size n once. Should Acme pay Flitwick to develop the faster algorithm or should they stick with their current algorithm? Explain.
(a) Let $n=41, f(n)=1.99^{n}, g(n)=n^{3}$ and $t=17$ days.
i. The time it will take the original algorithm to complete is

$$
1.99^{n} \text { where } n=41 \rightarrow 1790507451731.9128 \mathrm{~ms} \rightarrow 20.7235 d
$$

Flitwick can complete and run his algorithm in

$$
17+n^{3} \text { where } n=41 \rightarrow 17 d+68921 m s \rightarrow 17.0000007977 d
$$

Therefore the company should pay him to develop the better algorithm as it will save them 3 days time.
(b) Let $n=10^{6}, f(n)=n^{2.00}, g(n)=n^{1.99}$ and $t=2$ days.
i. The time it will take the original algorithm to complete is

$$
n^{2.00} \text { where } n=10^{6} \rightarrow 1000000000000 \mathrm{~ms} \rightarrow 11.5741 \mathrm{~d}
$$

Flitwick can complete and run his algorithm in

$$
2+n^{1.99} \text { where } n=10^{6} \rightarrow 2 d+870963589956.0806 \mathrm{~ms} \rightarrow 12.0806 d
$$

Therefore the company should not pay him to develop the better algorithm as it will take an extra day and a half to complete.
5. Using the mathematical definition of Big-O, answer the following. Show your work.
(a) Is $2^{n k}=O\left(2^{n}\right)$ for $k>1$?
i. No. $2^{n k}$ will always grow faster that 2^{n}.

$$
2^{n k} \rightarrow\left(2^{n}\right)^{k} \rightarrow\left|\left(2^{n}\right)^{k}\right| \not \leq c\left|2^{n}\right|
$$

(b) Is $2^{n+k}=O\left(2^{n}\right)$, for $k=O(1)$?
i. Yes. 2^{k} is constant, therefore

$$
2^{n+k} \rightarrow 2^{n} 2^{k} \rightarrow\left|2^{n} 2^{k^{c}}\right|^{c} \leq c\left|2^{n}\right|
$$

6. Is an array that is in sorted order also a min-heap? Justify.
(a) Technically no, they are not the same. They have differing data structures, however they are more similar than not upon further inspection. A sorted array has the form $[1,2,3,4,5]$ while a min-heap has the form

Figure 1: A Sample Min-Heap
with a corresponding data structure similar to the sample code below.

```
class Node:
    left = left_node_class_object # Must be greater than Node
    right = right_node_class_object # Must be greater than Node
    value = node_value
```

As is evident the fundamental data structures expressing the two are not similar in the slightest. This being said however, a sorted array will correspond the following min-heap

Figure 2: The Min-Heap for our Array

When the min-heap is accessed top-down, left-to-right it will have a one-to-one correspondence to our array. So to put it succinctly, the two data structures are not the same, however they have similar appearance and behavior.

[^0]: ${ }^{1}$ This is assuming that $\lg (x)$ refers to the base- 2 logarithm, $\log _{2}(x)$.

