
Problem Set One
Zoe Farmer

February 26, 2024

1. For each claim, determine whether the statement is True or False. Justify your
answer.
(a) n+3 = O(n3) → True. According to the definition of Big-O notation, f = O(g)

if
(∃c, k > 0, x > k) [|f(x)| ≤ c |g(x)|]

Therefore
|n+ 3| ≤ c

∣∣n3
∣∣

and the statement is valid.
(b) 32n = O(3n) → False. Again, using the previous definition of Big-O notation we

see that ∣∣32n∣∣ ̸≤ c |3n|

(c) nn = o(n!) → False. We can use the definition of little-o notation which states
that f is little-o of g if

lim
x→∞

f(x)

g(x)
= 0

Therefore this statement turns to

lim
x→∞

nn

n!
= ∞

Therefore the statement is invalid.
(d) 1

3n = o(1) → True. We then use the above definition again and apply L’Hospital’s
Rule to determine the value of the limit.

lim
x→∞

1

3n
→ lim

x→∞

0

3
= 0

(e) ln3(n) = Θ(log32(n)) → False1 We can use the definition of Big-O notation to
determine that

ln3(n) = O(log32(n))

1This is assuming that lg(x) refers to the base-2 logarithm, log2(x).

1

Problem Set 1 Zoe Farmer

because
∣∣ln3(n)∣∣ ≤ c

∣∣log32(n)∣∣, however

log32(n) ̸= O(ln3(n))

because
∣∣log32(n)∣∣ ̸≤ c

∣∣ln3(n)∣∣. Therefore the statement is false.

2. Simplify each of the following expressions.
(a)

d

dt
(3t4 + 1/3t3 − 7) → 12t3 + t2

(b)
k∑

i=0

2i → 1 + 2 + 4 + · · ·+ 2k → 2k+1 − 1

(c)

Θ

(
n∑

k=1

1

k

)
→ Hn

Where Hn is the nth Harmonic number.

3. T is a balanced binary search tree storing n values. Describe an O(n)-time algorithm
that takes input T and returns an array containing the same values in ascending order.
(a) Below is the code to perform this operation.

CSCI 3104 2 Clauset

Problem Set 1 Zoe Farmer

Balanced Binary Search Tree to Ascending Array
1 asc = [] # List to populate
2 class Node: # The structure of any given node
3 left = None # Class object of left node
4 right = None # Class object of right node
5 value = None # Value of node
6 def tree_to_array(head): # Function to scrape in asc order
7 if head.left != None: # If left is node
8 tree_to_array(head.left) # Take left
9 head.left = None # Destroy traversed result

10 if head.right != None: # Else take right
11 asc.append(head.value) # Take next smallest val
12 tree_to_array(head.right) # Go right
13 head.right = None # Destroy traversed result
14 if head.left is None and # If both sides are empty
15 head.right is None:
16 try:
17 if (head.value >=
18 asc[len(asc) - 1]): # If larger than prev
19 asc.append(head.value) # This value is our next smallest
20 except IndexError: # Only enter if list is empty
21 asc.append(head.value) # This value is our next smallest
22 head = construct_tree(random=true) # Create a random balanced tree
23 print(tree_to_array(head)) # Print our end array

4. Acme Corp. has asked Professor Flitwick to develop a faster algorithm for their core
business. The current algorithm runs in f(n) time. (For concreteness, assume it
takes f(n) microseconds to solve a problem of size exactly n.) Flitwick believes he can
develop a faster algorithm, which takes only g(n) time, but developing it will take t
days. Acme only needs to solve a problem of size n once. Should Acme pay Flitwick to
develop the faster algorithm or should they stick with their current algorithm? Explain.
(a) Let n = 41, f(n) = 1.99n, g(n) = n3 and t = 17 days.

i. The time it will take the original algorithm to complete is

1.99n where n = 41 → 1790507451731.9128ms → 20.7235d

Flitwick can complete and run his algorithm in

17 + n3 where n = 41 → 17d+ 68921ms → 17.0000007977d

Therefore the company should pay him to develop the better algorithm as it
will save them 3 days time.

(b) Let n = 106, f(n) = n2.00, g(n) = n1.99 and t = 2 days.
i. The time it will take the original algorithm to complete is

n2.00 where n = 106 → 1000000000000ms → 11.5741d

Flitwick can complete and run his algorithm in

2 + n1.99 where n = 106 → 2d+ 870963589956.0806ms → 12.0806d

CSCI 3104 3 Clauset

Problem Set 1 Zoe Farmer

Therefore the company should not pay him to develop the better algorithm
as it will take an extra day and a half to complete.

5. Using the mathematical definition of Big-O, answer the following. Show your work.
(a) Is 2nk = O(2n) for k > 1?

i. No. 2nk will always grow faster that 2n.

2nk → (2n)
k →

∣∣∣(2n)k∣∣∣ ̸≤ c |2n|

(b) Is 2n+k = O(2n), for k = O(1)?
i. Yes. 2k is constant, therefore

2n+k → 2n2k → |2n���
c

2k| ≤ c |2n|

6. Is an array that is in sorted order also a min-heap? Justify.
(a) Technically no, they are not the same. They have differing data structures,

however they are more similar than not upon further inspection. A sorted array
has the form [1, 2, 3, 4, 5] while a min-heap has the form

Figure 1: A Sample Min-Heap

with a corresponding data structure similar to the sample code below.
Sample Min-Heap Data Structure

1 class Node:
2 left = left_node_class_object # Must be greater than Node
3 right = right_node_class_object # Must be greater than Node
4 value = node_value

As is evident the fundamental data structures expressing the two are not similar
in the slightest. This being said however, a sorted array will correspond the
following min-heap

CSCI 3104 4 Clauset

Problem Set 1 Zoe Farmer

Figure 2: The Min-Heap for our Array

When the min-heap is accessed top-down, left-to-right it will have a one-to-one
correspondence to our array. So to put it succinctly, the two data structures are
not the same, however they have similar appearance and behavior.

CSCI 3104 5 Clauset

