Problem Set One

Zoe Farmer

February 26, 2024

- 1. For each claim, determine whether the statement is **True** or **False**. Justify your answer.
 - (a) $n+3 = O(n^3) \to$ **True**. According to the definition of Big-O notation, f = O(g) if

$$(\exists c, k > 0, x > k) [|f(x)| \le c |g(x)|]$$

Therefore

$$|n+3| \le c \left| n^3 \right|$$

and the statement is valid.

(b) $3^{2n} = O(3^n) \rightarrow$ False. Again, using the previous definition of Big-O notation we see that

$$\left|3^{2n}\right| \not\leq c \left|3^n\right|$$

(c) $n^n = o(n!) \to$ **False**. We can use the definition of little-o notation which states that f is little-o of g if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

Therefore this statement turns to

$$\lim_{x \to \infty} \frac{n^n}{n!} = \infty$$

Therefore the statement is invalid.

(d) $\frac{1}{3n} = o(1) \rightarrow$ **True**. We then use the above definition again and apply L'Hospital's Rule to determine the value of the limit.

$$\lim_{x \to \infty} \frac{1}{3n} \to \boxed{\lim_{x \to \infty} \frac{0}{3} = 0}$$

(e) $\ln^3(n) = \Theta(\log_2^3(n)) \to \mathbf{False}^1$ We can use the definition of Big-O notation to determine that $\boxed{\ln^3(n) = O(\log_2^3(n))}$

$$\ln^3(n) = O(\log_2^3(n))$$

¹This is assuming that lg(x) refers to the base-2 logarithm, $\log_2(x)$.

because $\left|\ln^{3}(n)\right| \leq c \left|\log_{2}^{3}(n)\right|$, however

$$\log_2^3(n) \neq O(\ln^3(n))$$

because $\left|\log_2^3(n)\right| \leq c \left|\ln^3(n)\right|$. Therefore the statement is false.

2. Simplify each of the following expressions.

$$\frac{d}{dt}(3t^4 + 1/3t^3 - 7) \to 12t^3 + t^2$$

(b)

(a)

$$\sum_{i=0}^{k} 2^{i} \to 1 + 2 + 4 + \dots + 2^{k} \to \boxed{2^{k+1} - 1}$$

(c)

$$\Theta\left(\sum_{k=1}^{n} \frac{1}{k}\right) \to \boxed{H_n}$$

Where H_n is the n^{th} Harmonic number.

- 3. T is a balanced binary search tree storing n values. Describe an O(n)-time algorithm that takes input T and returns an array containing the same values in ascending order.
 - (a) Below is the code to perform this operation.

	Balanced Binary Search Ir	ree to Ascending Array
1	asc = []	# List to populate
2	class Node:	# The structure of any given node
3	left = None	# Class object of left node
4	right = None	# Class object of right node
5	value = None	# Value of node
6	<pre>def tree_to_array(head):</pre>	# Function to scrape in asc order
7	if head.left != None:	# If left is node
8	<pre>tree_to_array(head.left)</pre>	# Take left
9	head.left = None	# Destroy traversed result
10	if head.right != None:	# Else take right
11	asc.append(head.value)	# Take next smallest val
12	<pre>tree_to_array(head right)</pre>	# Go right
13	head.right = None	# Destroy traversed result
14	if head.left is None and	# If both sides are empty
15	head.right is None:	
16	try:	
17	if (head.value >=	
18	asc[len(asc) - 1]):	# If larger than prev
19	asc.append(head.value)	<i># This value is our next smallest</i>
20	except IndexError:	<i># Only enter if list is empty</i>
21	asc.append(head.value)	<i># This value is our next smallest</i>
22	<pre>head = construct_tree(random=true)</pre>	# Create a random balanced tree
23	<pre>print(tree_to_array(head))</pre>	# Print our end array

Balanced Binary Search Tree to Ascending Array ____

4. Acme Corp. has asked Professor Flitwick to develop a faster algorithm for their core business. The current algorithm runs in f(n) time. (For concreteness, assume it takes f(n) microseconds to solve a problem of size exactly n.) Flitwick believes he can develop a faster algorithm, which takes only g(n) time, but developing it will take t days. Acme only needs to solve a problem of size n once. Should Acme pay Flitwick to develop the faster algorithm or should they stick with their current algorithm? Explain.

(a) Let $n = 41, f(n) = 1.99^n, g(n) = n^3$ and t = 17 days.

i. The time it will take the original algorithm to complete is

 1.99^n where $n = 41 \rightarrow 1790507451731.9128ms \rightarrow 20.7235d$

Flitwick can complete and run his algorithm in

 $17 + n^3$ where $n = 41 \rightarrow 17d + 68921ms \rightarrow 17.0000007977d$

Therefore the company should pay him to develop the better algorithm as it will save them 3 days time.

(b) Let $n = 10^6$, $f(n) = n^{2.00}$, $g(n) = n^{1.99}$ and t = 2 days.

i. The time it will take the original algorithm to complete is

 $n^{2.00}$ where $n = 10^6 \rightarrow 10000000000ms \rightarrow 11.5741d$

Flitwick can complete and run his algorithm in

 $2 + n^{1.99}$ where $n = 10^6 \rightarrow 2d + 870963589956.0806 ms \rightarrow 12.0806 d$

Therefore the company *should not* pay him to develop the better algorithm as it will take an extra day and a half to complete.

- 5. Using the mathematical definition of Big-O, answer the following. Show your work.
 (a) Is 2^{nk} = O(2ⁿ) for k > 1?
 - i. No. 2^{nk} will always grow faster that 2^n .

$$2^{nk} \to (2^n)^k \to \left| \left(2^n \right)^k \right| \not\leq c \left| 2^n \right|$$

- (b) Is $2^{n+k} = O(2^n)$, for k = O(1)?
 - i. Yes. 2^k is constant, therefore

$$2^{n+k} \to 2^n 2^k \to |2^n 2^k| \le c |2^n|$$

- 6. Is an array that is in sorted order also a min-heap? Justify.
 - (a) Technically no, they are not the same. They have differing data structures, however they are more similar than not upon further inspection. A sorted array has the form [1, 2, 3, 4, 5] while a min-heap has the form

Figure 1: A Sample Min-Heap

with a corresponding data structure similar to the sample code below.

```
Sample Min-Heap Data Structure

class Node:

left = left_node_class_object # Must be greater than Node

right = right_node_class_object # Must be greater than Node

value = node_value
```

As is evident the fundamental data structures expressing the two are not similar in the slightest. This being said however, a sorted array will correspond the following min-heap

Figure 2: The Min-Heap for our Array

When the min-heap is accessed top-down, left-to-right it will have a one-to-one correspondence to our array. So to put it succinctly, the two data structures are not the same, however they have similar appearance and behavior.