
Problem Set Four
Zoe Farmer

Jeremy Granger
Ryan Roden

February 26, 2024

1. Recall that Huffman codes are constructed in a greedy fashion.
(a) What is an optimal Huffman code for the following set of frequencies, based on

the first 8 Fibonacci numbers?

[a:1, b:1, c:2, d:3, e:5, f:8, g:13, h:21]

i.

abcdefgh:54

abcdefg:33

abcdef:20

abcde:12

abcd:7

abc:4

ab:2

a:1

1111111

b:1

1111110

c:2

111110

d:3

11110

e:5

1110

f:8

110

g:13

10

h:21

0

(b) How many optimal Huffman codes are there for this set of frequencies? Justify
your answer.

1

Problem Set 4 Zoe Farmer, Jeremy Granger, Ryan Roden

i. There are three different cases to produce a unique Huffman code. One, if
the symbols a & b are switched in the tree. Two, if the parent symbol ab
and symbol c are switched in the tree. Or three, if the symmetry is flipped,
i.e. the tree goes up and left instead of up and right, switching the positions
of all 0’s with 1’s and vice versa.

Each case creates 2 different outcomes and none are dependent on any others,
so the Huffman code outcomes are represented by:

1, 2, 3

1, 2,¬3
1,¬2, 3

1,¬2,¬3
¬1, 2, 3

¬1, 2,¬3
¬1,¬2, 3

¬1,¬2,¬3

Therefore this set of symbols and frequencies has 8 different but equally
optimal Huffman Codes

(c) Generalize your answer to find an optimal code when the frequencies are the first
n Fibonacci numbers.

i. We can generalize our answer as is shown in Table 1

Symbol Code
a 1n−2 · 0
b 1n−2 · 1 or 1n−1

c 1n−3 · 0
...

...
nth 1n−n · 0 or 0

Table 1: Generalize Fibonacci Huffman Codes

2. Professor Hagrid is struggling with the problem of making change for n cents using
the smallest number of coins. Let the coin values be v1 > v2 > · · · > vr for r coins
types, and let each coin’s value vi be a positive integer. The output will be a set of
counts {di}, one for each coin type, such that

∑n
i=1 di = n and where k is minimized.

(Note: v1 is the most valuable coin.)
(a) Give a greedy algorithm, that takes O(n) time, to make change consisting of

quarters (worth 25 cents), dimes (10 cents), nickels (5 cents) and pennies (1
cent). Prove that your algorithm yields an optimal solution.

i. The strategy for this problem is defined as the following. At each step, choose
the coin of largest denomination possible without exceeding the total.

CSCI 3104 2 Clauset

Problem Set 4 Zoe Farmer, Jeremy Granger, Ryan Roden

1 # Input: array with coin values (vals)
2 # change value (n)
3 # Output: Array of coin counts
4 def change(vals=[c1, c2, ..., cn], n):
5 c = [0 for item in vals] # Number of coins we have
6 for i in range(0, len(c)): # Check each denomination
7 if n - vals[i] > 0: # If we can subtract
8 c[i] += 1 # Add to count
9 return [x + y for x,y in zip(c, # Recurse

10 change(n - vals[i], vals))] # combine
11 elif n - vals[i] == 0: # Base case when we get to 0
12 c[i] += 1 # Add to denomination count
13 return c # return count up the tree

This algorithm runs in O(n) time. The for-loop runs in constant time, which
is the number of coins we have, len(c). The function is then called as many
times as it takes until n goes to zero, which by nature is dependent on n.
Therefore the total runtime can be found with the recurrence relation

T (n) = T (n− vals[i]) +O(1) ⇒ O(n)

The reason this algorithm provides the optimal solution is demonstrated as
follows. For any coin denomination, there is at least one way to equivalently
equal that single coin with several smaller coins, but no ways to equate a
smaller coin with a larger one. To demonstrate,

25¢ =10¢ + 10¢ + 5¢︸ ︷︷ ︸
3 Coins

10¢ =5¢ + 5¢︸ ︷︷ ︸
2 Coins

5¢ =1¢ + 1¢ + 1¢ + 1¢ + 1¢︸ ︷︷ ︸
5 Coins

Given the above statement, we can state several facts about our algorithm.
One, any solution will have less than 3 dimes. One quarter is better than 3
dimes, therefore we will always have 2 or less. Two, any solution will have
less than 2 nickels. One dime is better than 2 nickels, therefore the most
nickels we can have is 1. Three, any solution will have less than 5 pennies.
One nickel is better than 5 pennies, therefore the most pennies we can have
is 4. The facts hold true about any optimal solution.

(b) Suppose that the available coins are in the denominations that are powers of c,
i.e., denominations of c0, c1, . . . , cl for some integers c > 1 and l ≥ 1. Prove that
the greedy algorithm always yields an optimal solution in this case.

i. To start, we know that every value of c has c0 (the “penny”) so every positive
integer n has a solution with the greedy algorithm.

Similarly to above every denomination can be created with some combination
of lower denominations. An illustrative example is when c = 2 and we’ll let

CSCI 3104 3 Clauset

Problem Set 4 Zoe Farmer, Jeremy Granger, Ryan Roden

l = 3.

c3 = 8¢ =4¢ + 4¢︸ ︷︷ ︸
2 Coins

c2 = 4¢ =2¢ + 2¢︸ ︷︷ ︸
2 Coins

c1 = 2¢ =1¢ + 1¢︸ ︷︷ ︸
2 Coins

Using similar logic we can state several facts about our algorithm. Any
solution will have at most one 4¢ coin, and at most one 2¢ coin, because any
two 4¢ coins could be replaced with one 8¢ coin, and two 2¢ coins could be
replaced with one 4¢ coin. the optimal solution in this case.

Using a more extensible approach, we refer to our algorithm above. If we
take the largest ith denomination, such that n − ci ≥ 0 we now know that
every coin ci where i > 0 (our base case) can be comprised of no fewer than
c coins of value c(i−1). Therefore one ci coin will always yield a smaller coin
count than c of c(i− 1) for any value of n.

(c) Give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution, and explain why. The set should include a penny so that
there is a solution for every value of n.

i. One such situation is when we simply exclude the nickel. For this set of coin
denominations, we can look at when n = 30, and our algorithm will yield

30¢ = 25¢ + 1¢ + 1¢ + 1¢ + 1¢ + 1¢ ⇒ Algorithm Solution
30¢ = 10¢ + 10¢ + 10¢ ⇒ Optimal Solution

In this case our algorithm cannot provide the optimal solution, and is stuck
with an unoptimal solution. This occurs because the algorithm is stuck
choosing what it believes to be the “best” option at each step of the process.
In this case it starts with a quarter, and then the only remaining denomination
that can fit (since we’ve removed the nickel) is the penny, of which we need
5. Now if we had removed the quarter as well our algorithm would see that
the dime would fit at the first, second, and third steps, yielding three dimes
optimally instead of our unoptimal solution with a quarter.

To be fair, our algorithm is still pretty good. This case does not fail every
scenario, and still works for many, including the case where n = 36. This
yields one quarter, one dime, and one penny; which is in other words the
optimal solution.

3. Let A and B be arrays of integers. Each array contains n elements, and each array is
in sorted order (ascending). A and B do not share any elements in common. Give a
O(lg(n))-time algorithm which finds the median of A ∪B and prove that it is correct.
This algorithm will thus find the median of the 2n elements that would result from
putting A and B together into one array.
(a) Let’s start out by supposing that the (lower) median is in X. Let’s call this

median value m, and let’s suppose that it is in X[k]. Then k elements of X are

CSCI 3104 4 Clauset

Problem Set 4 Zoe Farmer, Jeremy Granger, Ryan Roden

less than or equal to m and n− k elements of X are greater than or equal to m.
We know that in the two arrays combined there must be n elements less than or
equal to m and n elements greater than or equal to m. So there must be n − k
elements of Y that are less than or equal to m and n − (n − k) = k elements of
Y that are greater than or equal to n.

Thus, we can check that X[k] is the lower median by checking Y [n−k] ≤ X[k] ≤
Y [n− k+1]. A boundary case occurs for k = n. Then n− k = 0 and there is no
array entry Y [0], so we only need to check X[n] ≤ Y [1]. Now if the median is in
X, but is not in X[k], then the above condition will not hold. If the median is
in X[k′] where k′ < k, then X[k] is above the median and Y [n − k + 1] < X[k].
Conversely, if the median is in X[k′′] where k′′ > k then X[k] is below the median
and X[k] < Y [n− k].

Thus we can use a binary search tree to determine whether there is an X[k]
such that either k < n and Y [n − k] ≤ X[k] ≤ Y [n − k + 1] or k = n and
X[k] ≤ Y [n−k+1]. If we find such an X[k], then it is the median. Otherwise we
know that the median is in Y , and we use a binary search to find Y [k] such that
either k < n and X[n−k] ≤ Y [k] ≤ X[n−k+1] or k = n and Y [k] ≤ X[n−k+1].
Such Y [k] is the median.

CSCI 3104 5 Clauset

Problem Set 4 Zoe Farmer, Jeremy Granger, Ryan Roden

1 n = len(X) # |X| = |Y |
2 def findk(X, Y, k):
3 if k == n: # If we’ve reached the end of the set
4 if X[n] <= Y[1]: # If the end of X is less than the first of Y
5 return k # We’ve found our median
6 else:
7 if ((Y[n - k] <= X[k]) and # If we’ve correctly identified k
8 (X[k] <= Y[n - k + 1])):
9 return k

10 else:
11 X1 = X[1:k - 1] # Endpoints inclusive
12 X2 = X[k + 1: n] # Endpoints inclusive
13 if X1 != [] and X2 != []: # If X1|2 ̸= ∅, search both
14 return findk(X1, Y, n / 4) or findk(X2, Y, (3 * n) / 4)
15 elif X1 != []: # Otherwise search the non-empty sets
16 return findk(X1, Y, n / 4)
17 elif X2 != []:
18 return findk(X2, Y, (3 * n) / 4)
19 else: # X1 = X2 = ∅
20 return None # Otherwise if both are empty we failed.
21 flag = False # Did we guess correctly?
22 k = n / 2 # Initial Guess
23 k = findk(X, Y, k) # Attempt to find k, the index of the lower median
24 if k is None:
25 flag = True # Picked the wrong starting set
26 k = findk(Y, X, n/2) # Use the other one
27 if flag: # If we resorted to Y
28 if k == n: # if lower median is at upper bound
29 median = (Y[k] + X[1]) / 2 # take k and X[1]
30 else: # Otherwise k and k + 1
31 median = (Y[k] + Y[k + 1]) / 2
32 else: # If X worked
33 if k == n: # As above, if at end take k and start of other
34 median = (X[k] + Y[1]) / 2
35 else: # Otherwise take k and k+1
36 median = (X[k] + X[k + 1]) / 2

CSCI 3104 6 Clauset

