
Problem Set Six
Zoe Farmer

Jeremy Granger
Ryan Roden

February 26, 2024

1. Complete the following table for the listed implementations of a dictionary ADT. You
will need to look up each of these implementations yourself and determine the running
times for each operation, in each case. Then, explain why hash tables become poor
choices relative to these alternatives when α = ω(log n).
(a)

Average Case Worst Case
Implementation Add(x) Find(x) Remove(x) Add(x) Find(x) Remove(x)
Hash Table O(1 + α) O(1 + α) O(1 + α) O(n) O(n) O(n)
Splay Tree O(log n) O(log n) O(log n) Amortized O(log n) Amortized O(log n) Amortized O(log n)
Skip Tree O(log n) O(log n) O(log n) O(n) O(n) O(n)
AVL Tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)
Red-Black Tree O(log n) O(log n) O(log n) O(log n) O(log n) O(log n)

Ω(log n) is a non-strict lower bound. When alpha equals Ω(log n), this is saying
that alpha running time will always be greater (in some cases, it could be much
greater) than log n. Therefore, when Ω(log n) is inserted in the hash table’s
average running time, the time becomes O(1+Ω(log n)) ⇒ O(Ω(log n)), which is
(potentially) a far worse running time than any of the other choices in our table.

2. Acme Corp. now wants Professor Flitwick to help them develop a new email application,
with a user-specific “blacklist” of n messages that are spam.

Here’s what Acme wants. When a new message arrives in a user’s mail queue, the app
needs to test whether the message is in the user’s blacklist. (If so, it will then mark
it as spam.) However, space is at a premium and Acme doesn’t want to literally store
all n spam messages in memory (assume each message is many bits in length).

Flitwick’s proposal is to use a Bloom filter, a probabilistic data structure with k hash
functions that can be used to test whether an element is in a set. Assume that each
hash function uses an its own binary array of length l, can map a string of arbitrary
length (an email) to some bit within this array, and is a uniform hash. Under this
scheme, a false positive occurs when a non-spam message is incorrectly labeled as
spam, i.e., is hashed to the same location as one of the n spam messages.
(a) For a false positive rate of no more than f = 1/100, what is the minimum number

of bits of space needed to guarantee that Flitwick can test in O(1) time whether
a new message is in the blacklist?

1

Problem Set 6 Zoe Farmer, Jeremy Granger, Ryan Roden

i. We know that the formula for the rate of false positives is

f =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
Assuming k = 1

1− e−n/m =
1

100

m =
−n

ln
(
1− 1

100

) ≈ 100n

If we assume that k = O(1), in other words our k is constant and we have a
constant number of hash functions, we can solve for m and obtain 100n.
Assuming that our k hash functions have equal probability of hashing to a
random position in our array, m, we know that the chance of any index i
getting chosen is 1

m . In order to guarantee testing any given email in O(1)
time with error rate less than 1

100 you must have have the length of the array
as 100n. This is apparent because the chance now for any index to be chosen
is 1

100n , which keeps the error rate below the given.
(b) Assume that Flitwick uses k = Θ(1) hash functions. Using asymptotic notation,

how many bits will Flitwick need if he wants the probability of false positives to
be no more than f = 1/n?

i. This is merely a modification of our above computation. We declared the
rate of false positives, and then when assuming k = 1 we determined our
length of m. We can now generalize for any given case.

f =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
Assuming k = 1

1− e−n/m =
1

n

m = O

(
−n

ln
(
1− 1

n

))

(c) Assume that Flitwick uses k = Θ(lg n) hash functions. Using asymptotic notation,
how many bits will he need if he wants the probability of false positives to be no
more than f = 1/n? Explain why this answer differs from that of 2b.

i. This is a further generalization of our previous equations, as we’re no longer

CSCI 3104 2 Clauset

Problem Set 6 Zoe Farmer, Jeremy Granger, Ryan Roden

assuming that k = 1, and instead it is replaced by a fuction of n.

f =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
Assuming k = lg n(

1− e
−n lg n

m

)lgn

=
1

n

∴ m =
−n lg n

ln
(
1−

(
1
n

) 1
lg n

)
(d) Suppose the adversary knows that Acme is using Flitwick’s scheme, but does not

have access to the hash functions being used. Describe a sequence of emails that
would defeat the Bloom filter approach either by rendering the system unusable
or by getting spam messages through the filter.

i. There are two main strategies to beating a Bloom filter with unknown hash
functions. The first is Saturation, in which we defeat the filter by creating
a sequence of emails that max out the filter itself. By default, a filter is
useless if it filters everything, so if we flooded it with unique emails that
were all “marked as spam” the filter would add all of them, at which point it
would start to automatically filter everything, and the filter would only find
false positives. This strategy relies on each successive email being radically
different than the prior one, as that leads to the highest chance of the new
email not hashing to just filled entries in m.
The other strategy is a little trickier and relies on some information being
known about the filtering techniques. Even if we don’t know the hash
functions themselves, if we can reproduce the filter’s conditions “black box”
style then we can take a more direct approach and determine which emails
get past the filter. This strategy relies on much more information being
known, and as a result is less likely to be used.

3. Professor Dumbledore gives you an array A[1 . . . n] with the special property that
A[1] ≥ A[2] and A[n − 1] ≤ A[n]. He instructs you that an element A[x] is a local
minimum if it is less than or equal to both its neighbors, or more formally, if A[x1] ≥
A[x] and A[x] ≤ A[x + 1]. For example, there are five local minima (each boldfaced)
in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

Even a neophyte Algorithms wizard can find a local minimum in O(n) time by scanning
through the array. Dumbledore asks you to instead (a) prove that A must contain at
least one local minimum, and (b) describe, analyze and prove the correctness for an
algorithm that always finds a single such local minimum in O(log n) time.
(a) To answer this we can look at the Extreme Value Theorem1

1

Theorem 1 (Extreme Value Theorem). If a real-valued function f is continuous in the closed and bounded

CSCI 3104 3 Clauset

Problem Set 6 Zoe Farmer, Jeremy Granger, Ryan Roden

Even though this applies solely to functions, we can define our own theorem that
states that for any array of numerical values there will be at least one minimum
and maximum. In essence, this is provable in that any sorted array of numbers
has to start at a certain value, and has to end at a certain value. There is no
such case in which a numerical array does not have a minimum and a maximum.

(b) We first declare x to be a global variable starting with null value. The first line
always tests if x is non-null and then returns ceasing all recursion while sending
x back up the tree. If a local min has not been found, test the middle index of
the array argument for function loc_min. If this is a local min, set it to x and
return x. If the middle index is not a local min and we have traversed down to
the left most leaf, then we know we will not find a local min in this section of the
array, so return x still set as null. If all of these base cases have still not returned
anything, then recurse left and right.
Our algorithm is listed below.

x = NULL
def loc_min (A[1 : n]) :

i f x != NULL or len (A) <= 2 :
return x

Helper func t i on o f O(1) time t e s t i n g i f
element i s a l o c a l minimum
i f test_loc_min (A[len (A) / 2]) :

return x = A[len (A) / 2]
I f recur s ion t r a v e r s e s down to l e f t most
l e a f and doesn ’ t f i n d l o c a l min , re turn
x as n u l l and s t a r t check ing r i g h t branches
loc_min (A[1 : n / 2])
loc_min (A[n /2 : n])

4. Recall the pancake problem from the midterm, in which we have a stack of n pancakes
of different sizes that we want to sort so that smaller pancakes are on top of larger
pancakes. The only operation we can perform to change the ordering is a flip: insert a
spatula under the top k pancakes, for some k between 1 and n, and flip them all over.
(a) Describe an algorithm based on Insertion Sort that sorts an arbitrary stack of n

pancakes, and prove that your algorithm is correct.
i.

i = 0
A [] // pancake s tack

f o r (i ; i < l en (A) − 2 ; i++) {
i f (A[i +1] > A[i]) {

key_value = A[i +1]
key_index = i+1
f l i p (i +1) // r e v e r s e s order o f f i r s t i+1 pancakes

interval [a, b], then f must attain a maximum and a minimum, each at least once.
http: // en. wikipedia. org/ wiki/ Extreme_ value_ theorem

CSCI 3104 4 Clauset

http://en.wikipedia.org/wiki/Extreme_value_theorem

Problem Set 6 Zoe Farmer, Jeremy Granger, Ryan Roden

f o r (j =1; j < key_index AND A[j] > key_value ; j++) {
tmp_flip = j

}

f l i p (tmp_flip)
f l i p (tmp_flip − 1)
f l i p (key_index)

}
}

(b) In the worst case, exactly how many flips does your algorithm perform?
i. Even though worst case runtime is O(n2), the pancake flips are only dependent

on the outer loop, O(n) so if there are 4 flips/iteration, then 4(len(A) − 1)
flips take place for the worst case time.

(c) Suppose one side of each pancake is burned. In the worst case, exactly how many
flips do you need to sort the pancakes and have the burned side of every pancake
on the bottom?

i. When you move the key pancake to the top of the stack, you want to have
the burned side up (so that when it is flipped into the sorted position the
burned side is now facing down). This can only add upto 1 extra flip from
part (b), so the worst case is now 5(len(A)− 1) flips.

CSCI 3104 5 Clauset

