
Problem Set Seven
Zoe Farmer

Jeremy Granger
Ryan Roden

February 26, 2024

1. Professor Dumbledore needs your help to compute the in and out degrees of all vertices
in a directed multigraph G. However, he is not sure how to represent the graph so that
the calculation is most efficient. For each of the three possible representations, express
your answers in asymptotic notation (the only notation Dumbledore understands), in
terms of V and E, and justify your claim.
(a) An edge list representation. Assume vertex indices can be arbitrary.

i. The asymptotic complexity of this is O(|E|) because it iterates over all edges
of each node for endpoints between vertices adding to the in and out-degree
hash tables as it goes. We know that adding to a hash table is approximately
constant time, so our total time is O(|E|) +O(1) = O(|E|).

(b) An adjacency list representation. Assume the vector’s length is known.
i. The asymptotic complexity of this is O(|V |+ |E|) because we need to iterate

through each node in the adjacency list and each edge associated with each
node, adding to a hash table tabulating the degrees as we go. The out degree
of any given node is the length of its edge list, while the in degree is calculated
as the edges are iterated over by adding to each edge endpoint’s in degree.

(c) An adjacency matrix representation. Assume the size of the matrix is known.
i. This is the easiest to determine, as the in degree of any node is simply the

sum of the corresponding column in the array, while its out degree is the
sum of its row. A sum operation is O(|V |), therefore the total complexity is
2O(|V |2).

2. Let G = (E, V) denote a directed multigraph. A simple and undirected graph is a
G = (V,E), such that E′ is derived from the edges in E so that (i) every directed
multi-edge, e.g., {(u, v), (u, v)} or even simply {(u, v)}, has been replaced by a single
pair of directed edges {(u, v), (v, u)} and (ii) all self-loops (u, u) have been removed.

Describe and analyze an algorithm (explain how it works, give pseudocode if necessary,
derive its running time and space usage, and prove its correctness) that takes time
O(V + E) and O(E) space to convert G into G′. Assume both G and G′ are stored
as adjacency lists.
(a) First replace every edge list with a hash table. Then iterate through the adjacency

list, letting the current node be denoted by i. For every node i with edge list

1

Problem Set 7 Zoe Farmer, Jeremy Granger, Ryan Roden

consisting of edges denoted by j, insert i into j’s hash table. If any i is found in
j, ignore it. After iterating through the nodes, convert each edge hash back into
an edge list.

As the iteration occurs, any repeat instance of the ith node will be ignored, and
not added to our hash tables, which in essence removes them. Any edge will also
be added to the destination node’s edge hash table, which when we convert back
to an array by indexing by keys we obtain our non-duplicating edge lists.

When our algorithm iterates, we are visiting every node, regardless of its loop-connection
relations. Because of this, we are guaranteed O(V) time. During our steps
through the adjacency list, we are inspecting each node’s edge list. We are
converting our directed edges to undirected edges (by essentially adding a new
node-edge relationship) which is a constant time operation. Because each edge
is compared within our adjacency list, we must add O(E) time. Thus, the total
running time approaches O(V + E) asymptotically.

3. A graph (V,E) is bipartite iff the vertices V can be partitioned into two subsets L and
R, such that every edge has one end in L and the other in R.
(a) Prove that every tree is a bipartite graph.

i. Given our input tree T0 with two branches L0 and R0, we can see that by
definition of a tree no node in L0 can connect to any node in R0. This means
that each level can be thought of as a different “side” of the bipartite graph.
To prove this consider the graph coloring problem. Start by coloring the
root node, T0 red, and it’s children (R0, L0) blue. Recursively apply this
operation with color red and blue alternating as you go. At the bottom of
the tree every level will be either red or blue, with no node in a single colored
level connecting to another node. If at any point we have an odd-length cycle
the definition of a tree will no longer hold, and the graph can no longer be
bipartite.

(b) Adapt an algorithm described in class so that it will determine whether a given
undirected graph is bipartite. Give and justify its running time.

i. The runtime of the below algorithm is O(|V | + |E|), since we are using an
adaptation of the previously discussed Search-Tree function. The algorithm
starts assuming that all nodes are clean and that their color is set to "None."
It then steps into the tree and sets the root node to red. From there, the first
child is set to blue and the second child is red. The graph is traversed using
this standard and the connected nodes are compared. If at any time they are
the same color, We conclude that the graph is not bipartite. The process of
visiting every node in the tree and assigning a color takes O(V) time because
there are V total nodes. Additionally, since every edge relationship is also
visited to determine whether any connected nodes are the same color, we
must add O(E) time because there are E edges. Thus, total asymptotic time
of this algorithm is O(V + E).

de f search_tree (nodes , s) :
Input : Adjacency l i s t graph s t r u c t u r e
[(’ a ’ , [1 , 2 , . . . , n0]) ,

CSCI 3104 2 Clauset

Problem Set 7 Zoe Farmer, Jeremy Granger, Ryan Roden

(’ b ’ , [1 , 2 , . . . , n1]) ,
:
(’m’ , [1 , 2 , . . . , nm])]
Where t h i s l i s t i s a l i s t o f t up l e s with node name , and a
l i s t o f i n d i c e s that i t po in t s to .
s i z e = len (nodes)
v = [0 f o r i in range (s i z e)]
d = [−1 f o r i in range (s i z e)]
c = [None f o r i in range (s i z e)]
q = [s]
d [s] = 0
whi le l en (q) > 0 :

x = q . pop ()
i f v [x] == 0 :

i f c [x] i s None and p [x] i s None :
c [x] = ’ red ’

e l i f c [x] i s None :
c [x] = ’ blue ’
i f c [p [x]] i s ’ blue ’ :

c [x] = ’ red ’
f o r y in nodes [x] [1] :

i f v [y] == 0 :
q . append (y)
d [y] = d [x] + 1

v [x] = 1
f l a g = True
f o r node in range (s i z e) :

edges = nodes [node] [1]
f o r j in range (l en (edges)) :

edge = edges [j]
i f c [node] == c [edge] :

f l a g = False
re turn f l a g

4. Professor Snape tells you that when an adjacency matrix representation is used, most
graph algorithms take Ω(|V |2) time, but there are some exceptions. Snape claims that
determining whether a directed graph G contains a universal sink, which is defined
as a vertex with in-degree |V | − 1 (i.e., every other vertex points to this one) and
out-degree 0, can be done in time O(|V |), given an adjacency matrix for G. Show that
Snape is correct.
(a) The below algorithm will determine whether or not a universal sink exists for

any given graph. It does this by exhaustively eliminating nodes that do not fit
the given criteria, but never eliminating a sink if it exists. This is based on the
properties of adjacency matrices with universal sinks.

Any adjacency matrix with a universal sink in position i will have a column of
all ones in the ith column save when i == j, and all zeros in the ith row. This
means that whenever a one is found we can eliminate that row’s corresponding

CSCI 3104 3 Clauset

Problem Set 7 Zoe Farmer, Jeremy Granger, Ryan Roden

node as a possible sink, while if a zero is found we can eliminate the corresponding
column as a possible sink, noting that for if i == j a zero is non-conclusive. Since
we iterate over every column in our matrix, we will eliminate all invalid column
nodes, and by dynamically adjusting i as we run into more invalid nodes we also
exhaustively find all invalid nodes.

de f s ink (G) :
not_sinks = []
i = 0
f o r j in range (l en (G)) :

element = G[i] [j]
i f i == j and element == 1 :

not_sinks . append (i)
i = j

e l i f e lement == 0 :
not_sinks . append (j)

e l i f e lement == 1 :
not_sinks . append (i)
i = j

s ink = node not in not_sinks
i f s ink i s None

re turn Fal se
re turn True

5. Implement an efficient algorithm that computes the diameter of an unweighted, undirected
input graph G = (V,E), when G is given in adjacency list format, and which takes
O(V + E) additional space. Write a paragraph explaining the algorithm, its running
time, and how it satisfies the space requirement.
(a) This algorithm is a derivation from the search-tree algorithm discussed in class,

and will perform a breadth-first-search between every pair of nodes in order to
identify the longest shortest path, which is by definition the diameter. The
largest difference between the discussed search tree and this one is that when the
below algorithm identifies the node it’s been searching for it stop and returns the
distance. The only storage needed for this algorithm to perform is the adjacency
matrix representation (which has space O(|V | + |E|), and 3 arrays (with size
O(|V |), therefore the algorithm has a O(|V |+ |E|) space requirement.

6. Use your implementation from 5 to conduct the following numerical experiment to
produce three nice-looking figures.
(a) For c = 5, show numerically that the expected diameter of G(n, p) increases like

O(log n). Because G(n, p) is a random variable, you should average the diameter
at a given value of n over several independent realizations (e.g., > 10) to get as
smooth a curve as you can. Don’t forget to vary n over a broad range. (One
figure.) Include a paragraph the summarizes how you conducted the experiment.

i. In order to complete this, we established a wrapper for our diameter function
that for any given number of nodes runs 10 experiments and takes the mean
values as a data point. We have 5 different datum to keep track of, the
number of nodes, the diameter of the network, the realtime duration, the

CSCI 3104 4 Clauset

Problem Set 7 Zoe Farmer, Jeremy Granger, Ryan Roden

number of operations, and the amount of space required, which are all
averaged and appended to our csv file. If you’ll note in the above definition
of our diameter algorithm each class instance records its space requirements
and how many operations are required.
We now use R’s ggplot2 to graph the relationships.
Which results in Figure (1).

(a) Size vs. Diameter (b) Size vs. Operations

(c) Size vs. Space (d) Size vs. Time

Figure 1: Diameter Estimation Analysis

7. Give an example of a directed graph G = (V,E), a source vertex s in V and a set of
tree edges Eπ ⊂ E such that for each vertex v in V , the unique path in the graph
(V,Eπ) from s to v is a shortest path in G, yet the set of edges Eπ cannot be produced
by running a breadth-first search on G, no matter how the vertices are ordered in each
adjacency list. Include a paragraph explaining why your example works.
We have for example:

CSCI 3104 5 Clauset

Problem Set 7 Zoe Farmer, Jeremy Granger, Ryan Roden

V = [s,A,B,C,D]

E = [(s,A), (s,B), (A,C), (A,D), (B,C), (B,D)]

E = Eπ

We see that in E, A is before B. A Breadth-First-Search algorithm would push (s,A)
and (s,B) onto the queue. Since a queue is First-In-Last-Out in Breadth-First-Search,
A will be loaded before B. This algorithm would then load (A,C) and (A,D), which
would always be before (B,C) and (B,D), and (A,D) and (B,C) would never be
loaded together, Therefore, Eπ will never be produced.

CSCI 3104 6 Clauset

