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## Error in library("qgraph"): there is no package called ’qgraph’
## Error in library("FRACTION"): there is no package called ’FRACTION’

1. The Engineers of Gondor have installed a set canals that convey water from the
spring s to the town t. (They couldn’t install just one big canal for technical reasons.
Specifically: they’re not dwarves.) Now, they are considering adding a new canal
connecting the spring to their distribution network G. However, the Engineers are not
sure how much additional water they will be able to push through G after adding the
proposed canal; they need your help to figure it out. The diagram below shows G′,
the network G plus the proposed canal X; edge labels indicate edge capacities.
(a) Make a diagram showing the minimum cut corresponding to the maximum flow

for G (where X = 0). What is the weight of that cut?

## Error in fra(7/8): could not find function "fra"
## Error in qgraph(edges, esize = 5, node.height = 1, node.width = 1, fade =
F, : could not find function "qgraph"

If we denote the cut to be the starred edges in the graph above, the min-cut
max-flow is 17.

(b) If the engineers add the canal X, what is the smallest capacity that would
maximize the increase in the water flow across the network?

i. If edge x = (s, v) where v is the vertex that X flows to, then minimum c that
maximizes flow across G is c(s, v) = 3. Since flux into a vertex equals flux
out of a vertex, we must look at the capacities of the edges dealing with the
out flux to determine the min capacity of X. There are two paths that leave
vertex v. The first edge of the first path can increase by 2 before saturation
(while not over-saturating any other edge). The first edge of the second path
can increase by 5, but the second edge in this path can only add 1 before
saturation, so the summation of the max flows of these paths is three, and
since flux out = flux in, then X = 3.
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## Error in fra(1/5): could not find function "fra"
## Error in qgraph(edges, esize = 5, node.height = 1, node.width = 1, fade =
F, : could not find function "qgraph"

(c) Describe how the engineers could use a min-cut/max-flow algorithm to decide
what capacity X should be used for an arbitrary graph G = (V,E) and arbitrary
proposed edge (u, v) ̸∈ E with capacity X.

i. When looking for where to add edge X, apply max-cut/min-flow. Look for
an edge in one of the min-cuts with a saturated edge, and add X to increase
the out flux capacity of this vertex to another vertex whose out flux path
to the sink does not have any saturated edges. The smallest change needed
to make this path have a saturated edge is the min capacity required to
optimize the max flow.

2. Given a graph G and a minimum spanning tree T , suppose that we decrease the weight
of one of the edges in T . Show that T is still a minimum spanning tree for G. More
formally, let T be a minimum spanning tree for G with edge weights given by weight
function w. Choose one edge (x, y) ∈ T and a positive number k, and define the weight
function w′ by

w′(u, v) =

{
w(u, v) → if(u, v) ̸= (x, y)

w(x, y)− k → if(u, v) = (x, y)

Show that T is a minimum spanning tree for G with edge weights given by w′.
(a) Consider another spanning tree T ′. If (x, y) ̸∈ T ′, then w′(T ′) = w(T ′) ≥ w′(T ).

If (x, y) ∈ T ′, then w′(T ′) = w(T ′)− k ≥ w′(T ). We notice that w′(T ) ≤ w′(T ′)
either way.

3. Returning to the Shire after your long trek back from Mordor, you decide that you
want to sell your stretch of river-front property (and move into a nice hobbit house).
From various interested hobbits (and wizards?), you receive a set of bids for various
intervals of the property. Wanting to maximize your profit across the set of sales, you
must now decide which subset of bids to accept.

Let [A,B] denote the left- and right-endpoints of the river-front property on some
real number line. Let the n bids you receive be denoted by the set X. Each bid is
composed of (i) an interval xi = [Li, Ri], where A ≤ Li < Ri ≤ B, and (ii) a value
w(xi) > 0. Your task is to find the largest subset of bids Y ⊂ X such that its value
w(Y ) =

∑
xi∈Y w(xi) is maximized. Note that if two intervals overlap, then they both

cannot be in Y , i.e., you cannot sell the same piece of land to two different bidders.
See the upper half of the figure below.
(a) Describe a naive greedy approach to solving the problem. Explain what properties

of X lead this approach to produce a suboptimal solution (a non-maximum w(Y )).
Provide an example of X for which your algorithm returns a suboptimal solution,
and identify the optimal solution Y .

i. A sub-optimal greedy algorithm sorts set X by the highest bid to the lowest,
which is O(n lg n). Run a for loop through set X, start by taking the
largest bid (first index in set) and add it to set Y , then for each subsequent
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bid, if it doesn’t overlap with anything in set Y , add it to set, which is O(n).
Go through set Y at the end and sum up their weights, O(n), and this is
sub-optimal profit, which is 100 in the picture.

The actual optimal profit is 693.

A|----------------------------------------------|B
|--------------------100-----------------------|
|-99--||-99--||-99--||-99--||-99--||-99--||-99-|

(b) Describe and analyze a dynamic programming algorithm that solves this problem
correctly.

i. We need two different parts for this. First, to establish groupings of separate
problems to be solved, and second to solve each subproblem, taking the
optimal solution. We’ll examine these two parts separately.

The first part is to find an array p such that p[i] for 0 ≤ i ≤ n yields the
previous disjoint subproblem. Put more clearly, p is the array such that for
any interval i, p[i] points to the interval j which is the last disjoint bid. Let
n equal the number of bids, L the array of left endpoints, and R the array of
right endpoints. We start by establishing an empty array for p, and sorting
our R and L arrays. Then we also establish our i and j to be 0 before
entering in a while loop which checks that i and j are less than n. In this
loop, if Ri ≤ Lj , we just increment i by one. Otherwise, if Ri > Lj , we set
p[j] = Ri−1 and increment j by one. This sets up our p array in O(n log(n))
time.

1 p = [None for i in range(n)]
2 starts = sorted(L) #O (n log(n))
3 finishes = sorted(R) #O (n log(n))
4 i = j = 0
5 while i < n and j < n:
6 if finishes[i] <= starts[j]:
7 i += 1
8 elif finishes[i] > starts[j]:
9 p[j] = finishes[i - 1]

10 j += 1

The next step is to use a for-loop (running in O(n)) making an array of
length n, which will be used to store memoized values.

The method find-optimal-profit() is our recursive call that actually
computes the optimal value for bid set Y . This function runs in constant
time (1 if statement, and 2 recursive calls). Once it recurses back to the
base cases and memoizes these, OPT[0], OPT[1],...OPT[n-2], then the if
statement will be false and simply return the corresponding OPT. So, OPT[i]
(i=n-1) will return the optimal profit that can be earned for bid set X.
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The method find-optimal-set() simply recursively goes back through the
memoized values of OPT and compares them to determine if the corresponding
bids are apart of the final set. The pseudo-code follows.

1 for i in in range(n):
2 OPT[i] = empty
3
4 def find-optimal-profit(i-1):
5 if OPT[i] is empty:
6 OPT[i] = max(wj + find-optimal-profit(p(i)),
7 find-optimal-profit(i-1))
8 return OPT[i]
9

10 def find-optimal-set(i):
11 if ( i = 0)
12 pass # set is empty do nothing
13 elif (wj + OPT[p(i)]) > OPT[i-1]:
14 print j
15 find-optimal-set(p(i))
16 else
17 find-optimal-set(i-1)

4. Although your hobbit friends Meriadoc and Peregrin are staying with you, after a
brilliant prank goes awry, they have bitter argument. You intervene to keep the peace
and they agree to stay away from each other for the time being. In particular, they
have agreed that when navigating the paths of the Shire, each will not walk on any
section of dirt that the other hobbit has stepped on that day. The hobbits have no
problem with their paths crossing at an intersection. The problem, however, is that
they both still need to get to the market each day to buy supplies. Fortunately, both
your house and the market are at intersections. You have a map of the Shire’s paths.
Show how to formulate the problem of determining whether both of your friends can
go to the market as a max-flow problem.
(a) We can convert the “map” of the Shire into a directed graph for use in our

max-flow problem. There are two requirements that we need: (i) there must be
two paths out of the house and two paths into the market and (ii) the capacity of
every path in our graph cannot exceed 1. Furthermore, we must keep in the back
of our minds that if Meriadoc of Peregrin claims a path to walk on, the other
must not walk on that path. Put another way, each path, if used, is reserved
exclusively for one hobbit only. Luckily, our second requirement above takes care
of this because each “solution”, if there are any, accounts for only one instance of
the hobbits traveling from the house to the market, and since each path can only
contain one hobbit, we should never have overlap. Also, since the hobbits can
cross paths at intersections, we are allowed to have nodes where two paths go in,
but not that these nodes must also have two paths that go out if the intersection
is to be used by both hobbits. If an intersection is only used by one hobbit, is
it allowed to have one path in and one path out. Also not that any intersection
can have any number combination of the two instances above, but the number of
paths of the hobbits used going in (in this case 0, 1, or 2) must be equal or greater
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than the number of paths used going out, e.g., if there are three total paths into
an intersection, and two of those three paths are used, then there must be at
least two paths our of the same intersection. My vision for a converted directed
graph from the Shire map is below (this is just one possibility).

Figure 1: Example Graph

Once we have a graph, we can simply run our Ford-Fulkerson Algorithm in order
to see possibilities. Below would be one possibility of our working example graph
from above.

Figure 2: Example Graph after Ford-Fulkerson

5. Preparing for a big end-of-semester party in The Shire, you open your cellar and count
n bottles of fine wine. Gandalf has previously warned you that exactly k of these
bottles have been poisoned, and consuming poisoned wine will result in an unpleasant
death. The party starts in one hour, and you do not want to poison any of your guests.

Luckily, a family of l docile rats occupies a corner of the cellar, and they have graciously
volunteered to be test subjects for identifying the poisoned bottles. Let l = o(n) and
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k = 1, and assume it takes just under one hour for poisoned wine to kill a rat. Describe
a scheme by which you can feed wine to rats and identify with complete certainty the
poisoned bottle, prove that the scheme is correct and give a tight bound on the number
of rats l necessary to solve the problem.
(a) A naive approach is simply to feed n rats a drop from each of the n bottles. This

results in requiring n rats. We can do better.

Number all of the bottles of wine 0, . . . , n. Number all of the rats 0, . . . , l. Now
convert all of the wine bottle labels to binary, yielding a set of bottles with
numbering {0, 1, 10, 11, 100, . . .}. For each bottle, the bit indicates which rat we
feed that bottle to. For instance, bottle 10110 would be fed to rats 1, 2, 4. When
we do this the rats now act as “bits”. After an hour if we look at which rats have
died and reconstruct the bits from them, we’ll get the label of the poisoned bottle.

For instance, let there be 10 bottles of wine. These are numbered as 0 through
1001, and we need 4 rats to determine the poison.

Bottle Label 0 1 2 3
0 N N N N
1 Y N N N
10 N Y N N
11 Y Y N N
100 N N Y N
101 Y N Y N
110 N Y Y N
111 Y Y Y N
1000 N N N Y
1001 Y N N Y

Table 1: Wine and Rats

We can see that if (for instance) rats 0 and 2 die, bottle 101 is poisoned.

This method requires log(n) rats since we’re using bits, which is significantly
better than n.
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