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1 Preliminaries
There are three axioms that we start with. The Field Axiom, the Positivity Axiom, and the
Completeness Axiom.

1.1 Field Axiom
To explain the field axiom we will use an example. R is a field as it obeys the definition of
a field.

Definition 1.1 (Field). A field, F , is a set F together with two operations, “+” and “·”,
F = (F,+, ·) such that for all a, b, c,∈ F :

If x, y ∈ F then
A0: Closure under Addition: x+ y ∈ F .
A1: Communitivity under Addition: x+ y = y + x.
A2: Associativity under Addition: x+ (y + z) = (x+ y) + z.
A3: Additive Identity: ∃0 ∈ F such that x+ 0 = x.
A4: Additive Inverse: ∀x ∈ F , ∃(−x) ∈ F such that x+ (−x) = 0.
M0: Closure under Multiplication: xy ∈ F .
M1: Communitivity under Multiplication: xy = yx.
M2: Associativity under Multiplication: x(yz) = (xy)z.
M3: Multiplicative Identity: ∃1 ∈ F such that (1)x = x.
M4: Multiplicative Inverse: ∀x ∈ F , ∃x−1 such that (x)

(
x−1

)
= 1 as long as x ̸= 0.

C1: Distributive Property: x(y + z) = xy + xz.
C2: Non-Triviality: 1 ̸= 0

By this definition, R is a field.

1.2 Positivity Axiom
The following two postulates define the Positivity Axiom.

Definition 1.2 (Positivity). 1. If a and b are positive (a, b > 0) then so is a+ b and ab.
2. For a ∈ R, exactly one of the following is true:

(a) a > 0

(b) a < 0

(c) a− 0

These postulates give an ordering on R. Not all fields have order however. C for example
does not have this order.

1.3 Completeness Axiom
A nonempty set S ⊂ R is bounded above if there is a number c such that x ≤ c,∀x ∈ S. c
is called the upper bound of S.

Definition 1.3 (Completeness). If S is a non-empty subset of R that is bounded above then,
among the set of upper bounds of S, there exists a smallest, or least upper bound (lub,
supremum, sup).
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A non-empty set S ⊂ R is bounded below if ∃c such that c ≤ x, ∀x ∈ S then c is called
the greatest lower bound (glb, infinum, inf).

Definition 1.4 (Maximum). If S ⊂ R, S ̸= ∅, c ∈ S, c is called the maximum of S provided
that c is an upper bound.

1.4 Induction
Definition 1.5 (Inductive). A set S of real numbers is inductive if

1. 1 ∈ S

2. x ∈ S ⇒ x+ 1 ∈ S

We can prove using induction, which is covered in my other notes for Discrete Math.

1.5 Denseness
Definition 1.6 (Dense). A set S is said to be dense in R provided every interval I = (a, b)
where a < b contains a member of S.

1.6 Useful Formulas
1.6.1 Distribution of Integers

For any c there exists exactly one integer in the interval [c, c+ 1).
For any a, b with a < b there exists a rational number in the interval (a, b).

1.6.2 Archimedean Property

The following two statements are equivalent.
• For any c > 0, there exists some n ∈ N such that n > c.
• For any ϵ > 0, there exists some n ∈ N such that 1

n < ϵ.

1.6.3 Formulas

• Difference of Powers:

an − bn = (a− b)

n−1∑
k=0

an−1−kbk

• Geometric Sum
n∑

k=0

rk =
1− rn+1

1− r

• Binomial Formula1

(a+ b)
n
=

n∑
k=0

(
n

k

)
an−kbk

1 (n
k

)
=

n!

k!(n− k)!
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2 Convergent Sequences
Definition 2.1 (Sequence). A sequence of real numbers is a real valued function, f(x), whose
domain is the set of natural numbers.

Definition 2.2 (Convergence). A sequence {an} is said to converge to a provided that for
every positive number ϵ there exists an N such that

|an − a| < ϵ ∀n ≥ N

In other words, {an} converges to a if ∀ϵ there exists an N such that

a− ϵ < an < a+ ϵ

If {an} converges to a then

lim
n→∞

an = a

Definition 2.3 (Comparison Lemma). Let {an} converge to a, then {bn} converges to b if
there exists a non-negative number C and N such that

|bn − b| ≤ C|an − a| ∀n ≥ N

2.1 Properties of Convergent Sequences
Let {an} and {bn} be two convergent sequences that converge to a and b respectively.

• Sum Property:
lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

• Constant Multiple:
lim
n→∞

α · an = α · a

• Product Property:
lim

n→∞
an · bn = a · b

• Inverse:
lim

n→∞

1

bn
=

1

b

• Quotient Property:
lim

n→∞

an
bn

=
limn→∞ an
limn→∞ bn

• Linearity Property:

lim
n→∞

(α · an + β · bn) = α lim
n→∞

an + β lim
n→∞

bn

• Polynomial Property: For any polynomial p : R → R

lim
n→∞

p(an) = p(a)
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• Convergence: A sequence is bounded if

|{an}| ≤ M

Every convergent sequence is bounded.

2.2 Denseness
Definition 2.4 (Dense). A subset S is dense if for every open interval (a, b) there exists some
point in S contained in the interval.

We need to establish the concept of having a sequence being contained in a set. Some
set S, {xn} is in the set S provided that for all indices n, xn ∈ S.

Therefore S is dense in R if and only if every x is the limit of some sequence in S.

Definition 2.5 (Sequential Density). Every number is the limit of a sequence of rational
numbers.

Definition 2.6 (Closed). S ⊆ R is closed if {an} is a sequence in S that converges to a and
the limit a is contained in S.

2.3 Monotone Sequences
A sequence {an} is monotonically increasing if an+1 ≥ an, and decreasing if an+1 ≤ an.

Theorem 2.1 (Monotone Convergence Theorem). A monotone sequence converges if and
only if it is bounded.

The following propositions hold from the Monotone Convergence Theorem.
• Let c be a number such that |c| < 1, then

lim
n→∞

cn = 0

Theorem 2.2 (Nested Interval Theorem). For each natural number n, let an and bn be
numbers such that an < bn, and consider the interval In ≡ [an, bn]. Assume that In+1 ⊆ In
for every index n. Also assume that limn→∞[bn − an] = 0. Then there is exactly one point
x that belongs to the interval In for all n, and both of the sequences {an} and {bn} converge
to this point.

2.4 The Sequential Compactness Theorem
Definition 2.7 (Subsequence). Let {an} be some sequence. Let {nk} be a sequence of natural
numbers that is strictly increasing. Then the sequence {bk} defined by bk = ank

for any
index k is called a subsequence of the sequence {an}.

The following properties follow:
• If {an} converges to a, then every subsequence also converges to the same limit a.

Theorem 2.3 (Monotone Subsequences). Every sequence has a monotone subsequence.

Theorem 2.4 (Subsequence Convergence). Every bounded sequence has a convergent subsequence.

Definition 2.8 (Sequential Compactness). A set of real numbers S is said to be sequentially
compact provided that every sequence {an} in S has a subsequence that converges to a
point that belongs to S.

Undergraduate Applied Analysis One 6 James Meiss
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2.5 Covering Properties of Sets
Let S be a subset of R that is closed and bounded. Then S is sequentially compact.

Definition 2.9 (Compact). A subset S of R is said to be compact provided that any cover
of S by a collection {In}∞n=1 of open intervals has a finite subcover, that is, if for each index
n, In is an open interval and

S ⊆ U∞
n=1In

then there is an index N such that

S ⊆ U∞
n=1IN

Let S be a compact subset of R. Then S is both closed and bounded.
Let S be a sequentially compact subset of R. Then S is compact.

Theorem 2.5 (Sequentially Compact Properties). For a subset S of R, the following three
assertions are equivalent.

• S is closed and bounded.
• S is sequentially compact.
• S is compact.

Undergraduate Applied Analysis One 7 James Meiss
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3 Continuity
In essence, a function is continuous if there exists a sequence in x that corresponds to a
sequence in y.

Definition 3.1 (Continuous). A function f : D → R is said to be continuous at the point
x0 in D provided that whenever {xn} is a sequence in D that converges to x0, the image
sequence {f(xn)} converges to f(x0). The function f : D → R is said to be continuous
provided that it is continuous at every point in D.

Given two functions f : D → R and g : D → R, we define the sum f + g : D → R, and
the product fg : D → R by

(f + g)(x) ≡ f(x) + g(x)

(fg)(x) ≡ f(x)g(x)

Some base properties hold.
1. Sums are continuous
2. Products are continuous
3. For non-zero functions, the quotient is continuous.
4. Polynomial quotients are continuous.
5. Compositions are continuous.

Theorem 3.1 (The Extreme Value Theorem). A continuous function on a closed bounded
interval

f : [a, b] → R

attains both a minimum and a maximum value.
Lemma: The image of a continuous function on a closed bounded interval is bounded

above, that is, there is a number M such that

f(x) ≤ M ∀x ∈ [a, b]

Theorem 3.2 (The Intermediate Value Theorem). Suppose that the function f : [a, b] → R
is continuous. Let c be a number strictly between f(a) and f(b); that is

f(a) < c < f(b) or f(b) < c < f(a)

Then there is a point x0 in the open interval (a, b) at which f(x0) = c

Definition 3.2. A subset of D of R is said to be convex provided that whenever the points
u an v are in D and u < v, then the whole interval [u, v] is contained in D.

Theorem 3.3. Let I be an interval and suppose that the function f : I → R is continuous.
Then its image f(I) also is an interval.

Definition 3.3. A function f : D → R is said to be uniformly continuous provided that
whenever {un} and {vn} are sequences in D such that

lim
n→∞

[un − vn] = 0

Undergraduate Applied Analysis One 8 James Meiss
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then

lim
n→∞

[f(un)− f(vn)] = 0

Theorem 3.4. A continuous function on a closed bounded interval,

f : [a, b] → R

is uniformly continuous.

3.1 The ϵ− δ Criterion for Continuity
Definition 3.4. A function f : D → R is said to satisfy the ϵ − δ criterion at a point x0 in
the domain D provided that for each positive number ϵ there is a positive number δ such
that for x in D

|f(x)− f(x0)| < ϵ if |x− x0| < δ

This can be reworded as “For each symmetric band of width 2ϵ about the line y = f(x0)
(no matter how small this width is), there is an interval (x0 − δ, x0 + δ), centered at x0 and
of diameter 2δ > 0, such that the graph of the restriction of f to this interval lies in the
given band.”

Theorem 3.5. For a function f : D → R and a point x0 in its domain D, the following two
assertions are equivalent.

1. The function f is continuous at x0; that is, for a sequence {xn} in D,

lim
n→∞

f(xn) = f(x0) if lim
n→∞

xn = x0

2. The ϵ− δ criterion at the point x0 holds; that is, for each positive number ϵ there is a
positive number δ such that for x in D,

|f(x)− f(x0)| < ϵ if |x− x0| < δ

Definition 3.5 (The ϵ− δ Criterion on the Domain). A function f : D → R is said to satisfy
the ϵ − δ criterion on the domain D provided that for each positive number ϵ there is a
positive number δ such that for all u, v in D,

|f(u)− f(v)| < ϵ if |u− v| < δ

Theorem 3.6. For a function f : D → R the following two assertions are equivalent:
1. The function is uniformly continuous; that is, for two sequences {un} and {vn} in D,

lim
n→∞

[f(un)− f(vn)] = 0 if lim
n→∞

[un − vn] = 0

2. The function f satisfies the ϵ− δ criterion at the domain D; that is, for each positive
number ϵ there is a positive number δ such that for u, v in D,

|f(u)− f(v)| < ϵ if |u− v| < δ

Undergraduate Applied Analysis One 9 James Meiss
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3.2 Images and Inverses; Monotone Functions
Definition 3.6. The function f is called monotonically increasing provided that

f(v) ≥ f(u) ∀u, v ∈ D|v > u

Decreasing in the reverse. If a function is one or the other, it is said to be monotone. If
the inequality is changed to be strict, then we call it strictly monotone.

Theorem 3.7. Suppose that the function f is monotone. If its image f(D) is an interval,
then the function f is continuous.

Corollary: Let I be an interval and suppose that the function f : I → R is monotone.
Then the function f is continuous iff its image f(I) is an interval.

Theorem 3.8. Let I be an interval and suppose that the function f : I → R is strictly
monotone. Then the inverse function f−1 : f(I) → R is continuous.

Definition 3.7. For x > 0 and rational number r = m/n, where m and n are integers with
n positive, we define

xr ≡ (xm)
(1/n)

3.3 Limits
Definition 3.8. For a set D of real numbers, the number x0 is called a limit point of D
provided that there is a sequence of points in D \ {x0} that converges to x0.

Definition 3.9. Given a function f : D → R and a limit point x0 of its domain D, for a
number l, we write

lim
x→x0

f(x) = l

Theorem 3.9. For functions f and g, and a limit point x0 of their domains D, suppose that

lim
x→x0

f(x) = A and lim
x→x0

g(x) = B

Then

lim
x→x0

[f(x) + g(x)] = A+B

lim
x→x0

[f(x)g(x)] = AB

and if B ̸= 0 and g(x) ̸= 0 for all x in D,

lim
x→x0

f(x)

g(x)
=

A

B

This extends to function compositions.

Undergraduate Applied Analysis One 10 James Meiss
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4 Differentiation
An open interval I = (a, b) that contains the point x0 is called a neighborhood of x0.

Definition 4.1. Let I be a neighborhood of x0. Then the function f is said to be differentiable
at x0 provided that

lim
x→x0

f(x)− f(x0)

x− x0

exists, in which case we denote this limit by f ′(x0) and call it the derivative of f at x0.
If the function is differentiable at every point in I, we say that f is differentiable, and call
f ′ the derivative of f .

A differentiable function is continuous.

Some rules:
1. (xn)

′ ⇒ nxn−1

2. (f + g)
′ ⇒ f ′ + g′

3. (fg)
′ ⇒ f ′g + fg′

4. Polynomials are differentiable.
5. (g ◦ f)′(x0) = g′(f(x0))f

′(x0)

Theorem 4.1 (Derivative of the Inverse). Let I be a neighborhood of x0 and let the function
f : I → R be strictly monotone and continuous. Suppose that f is differentiable at x0 and
that f ′(x0) ̸= 0. Define J = f(I). Then the inverse f−1 : J → R is differentiable at the
point y0 = f(x0) and (

f−1
)′
(y0) =

1

f ′(x0)

Corollary: Let I be an open interval and suppose that the function f : I → R is strictly
monotone and differentiable with a nonzero derivative at each point in I. Define J = f(I).
Then the inverse function f−1 : J → R is differentiable and(

f−1
)′
(x) =

1

f ′(f−1(x))

Theorem 4.2 (Rolle’s Theorem). Suppose that the function f : [a, b] → R is continuous and
that the restriction of f to the open interval (a, b) is differentiable. Assume, moreover, that

f(a) = f(b)

Then there is a point x0 in the open interval (a, b) at which

f ′(x0) = 0

Theorem 4.3 (Mean Value Theorem). Suppose that the function f : [a, b] → R is continuous
and that the restriction of f to the open interval (a, b) is differentiable. Then there is a point
x0 in the open interval (a, b) at which

f ′(x0) =
f(b)− f(a)

b− a

Undergraduate Applied Analysis One 11 James Meiss
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Lemma: Let I be a neighborhood of x0 and suppose that the function f : I → R is
differentiable at x0. If the point x0 is either a maximizer or a minimizer of the function
f : I → R, then f ′(x0) = 0.

Theorem 4.4 (The Identity Criterion). A function f is said to be constant provided that
there is some number c such that f(x) = c for all x in D.

This function is also constant if f ′ = 0 for all x in I.
Let functions g and h be differentiable. These functions differ by a constant2 iff g′(x) =

h′(x). These functions are the same if at some point x0, g(x0) = h(x0).

Theorem 4.5 (The Monotone Criterion). If f ′(x) > 0 for all x, then f is strictly increasing.

Theorem 4.6 (The Maximizer and Minimizer Criterion). A point x0 in the domain of a
function f is said to be a local maximizer for f provided that there is some δ > 0 such that

f(x) ≤ f(x0) for all x in D such that |x− x0| < δ

This is flipped for minimizers.
If x0 is a minimizer or maximizer, then f ′(x0) = 0. This also implies{

f ′′ > 0 ⇒ x0 is minimizer
f ′′ < 0 ⇒ x0 is maximizer

Theorem 4.7 (The Cauchy Mean Value Theorem). Suppose that the functions f : [a, b] → R
and g : [a, b] → R are continuous and that their restrictions to the open interval (a, b) are
differentiable. Moreover assume that

g′(x) ̸= 0 ∀x ∈ (a, b)

Then there is a point x0 in the open interval (a, b) at which

f(b)− f(a)

g(b)− g(a)
=

f ′(x0)

g′(x0)

Lemma: Let I be an open interval and n be a natural number and suppose that the
function f : I → R has n derivatives. Suppose also that at the point x0 in I,

f (k)(x0) = 0 0 ≤ k ≤ n− 1

Then, for each point x ̸= x0 in I, there is a point z strictly between x and x0 at which

f(x) =
f (n)(z)

n!
(x− x0)

n

5 Differential Equations
We can provisionally solve a variety of differential equations.

2g(x) = h(x) + c

Undergraduate Applied Analysis One 12 James Meiss
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5.1 The Identity Criterion
A differentiable function g : I → R, where I is an open interval, is identically equal to 0 iff

1. its derivative g′ : I → R is identically equal to 0, and
2. there is some point x0 ∈ I at which g(x0) = 0.

5.2 The Logarithmic Differential Equation
This is defined as {

F ′(x) = 1
x ∀x > 0

F (1) = 0

Theorem 5.1. Let the function F : (0,∞) → R satisfy the differential equation above. Then,
1. F (ab) = F (a) + F (b)∀a, b > 0.
2. F (ar) = rF (a) if a > 0 and r is rational.
3. For each number c there is a unique positive number x such that F (x) = c.

This function is the natural logarithm, denoted lnx. Also, ln1 = e, ax ≡ exp(x ln a)

5.3 The Trigonometric Differential Equation
This is defined as 

f ′′ + f(x) = 0 ∀x
f(0) = 1

f ′(0) = 0

This is solved by sine and cosine.

6 Integration: Two Fundamental Theorems
6.1 Darboux Sums
Definition 6.1 (Partition). Let a and b be real numbers with a < b. If n is a natural number
and

a = x0 < x1 < · · · < xn−1 < xn = b

then P = {xn, . . . , xn} is called a partition of the interval [a, b]. For each index i ≥ 0, we
call xi a partition point of P , and if i ≥ 1, we call the interval [xi−1, xi] a partition interval
of P .

Suppose that some function f is bounded, and the partition P is a partition of its domain.
For each index i we define

mi ≡ inf {f(x)|x ∈ [xi−1, xi]}
Mi ≡ sup {f(x)|x ∈ [xi−1, xi]}

Undergraduate Applied Analysis One 13 James Meiss
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We then define

L(f, P ) ≡
n∑

i=1

mi(xi − xi−1)

U(f, P ) ≡
n∑

i=1

Mi(xi − xi−1)

U is the upper Darboux Sum based on the partition P , and L is the lower. It follows
from the definitions above that

mi ≤ Mi

Therefore, for any partition P ,

L(f, P ) ≤ U(f, P )

Based on our intuitive definition of the integral, it also follows that

L(f, P ) ≤
∫ b

a

f ≤ U(f, P )

Theorem 6.1 (The Refinement Lemma). Suppose that the function f : [a, b] → R is bounded
and that P is a partition of its domain [a, b]. If P ∗ is a refinement of P , then

L(f, P ) ≤ L(f, P ∗)

U(f, P ∗) ≤ U(f, P )

Theorem 6.2. Suppose that the function f is bounded, and that P1 and P2 are partitions of
its domain [a, b]. Then

L(f, P1) ≤ U(f, P2)

6.2 The Archimedes-Riemann Theorem
Definition 6.2. Suppose that some function f is bounded. Then we say that f is integrable
on [a, b] (or just integrable) if ∫ b

a

f =

∫ b

a

f

Theorem 6.3 (The Archimedes-Riemann Theorem). Let f be a bounded function. Then f
is integrable on [a, b] iff there is a sequence {Pn} of partitions of the interval [a, b] such that

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0

Moreover, for any sequence of partitions,

lim
n→∞

L(f, Pn) =

∫ b

a

f and lim
n→∞

U(f, Pn) =

∫ b

a

f
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Definition 6.3. Let the function [a, b] : R → R be bounded and for each natural number n,
let Pn be a partition of its domain [a, b]. Then {Pn} is said to be an Archimedean sequence
of partitions for f on [a, b] provided that

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0

Definition 6.4 (Regular Partitions). For a natural number n, the partition P = {x0, . . . , xn}
of the interval [a, b] defined by

xi = a+ i
b− a

n
∀0 ≤ i ≤ n

is called the regular partition of [a, b] into n partition intervals. It is characterized by the
fact that all partition intervals are the same length, namely (b− a)/n.

Definition 6.5 (The Gap of a Partition). For a partition P = {x0, . . . , xn} of the interval
[a, b], we define the gap of P , denoted by gap P , to be the length of the largest partition
interval of P , that is,

gap P ≡ max
1≤i≤n

[xi − xi−1]

6.3 Linearity
Theorem 6.4 (Linearity of the Integral). Let the two functions f and g be integrable. Then,
for any two numbers, α and β, the function αf + βg is integrable, and∫ b

a

[αf + βg] = α

∫ b

a

f + β

∫ b

a

g

6.4 Continuity and Integrability
Theorem 6.5. Two Theorems in this section:

1. A continuous function on a closed, bounded interval is integrable.
2. Suppose that the function f is bounded on the closed interval [a, b] and is continuous

on the open interval (a, b). Then f is integrable on [a, b] and the value of the integral∫ b

a
f does not depend on the values of f at the endpoints of the interval.

6.5 The First Fundamental Theorem: Integrating Derivatives
Theorem 6.6 (Integrating Derivatives). Let the function F be continuous on the closed
interval [a, b] and be differentiable on the open interval (a, b). Moreover, suppose that its
derivative F ′ : (a, b) → R is both continuous and bounded. Then∫ b

a

F ′(x) dx = F (b)− F (a)
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6.6 The Second Fundamental Theorem: Differentiating Integrals
Theorem 6.7 (The Mean Value Theorem for Integrals). Suppose that the function f is
continuous, then there is a point x0 ∈ [a, b] at which

1

b− a

∫ b

a

f = f(x0).

Theorem 6.8 (Differentiating Integrals). Suppose that the function f is continuous. Then

d

dx

[∫ x

a

f

]
= f(x) ∀x ∈ (a, b)

7 Approximation by Taylor Polynomials
7.1 Taylor Polynomials
Definition 7.1. Let I be a neighborhood of the point x0. Two functions f and g are said
to have contact of order 0 at x0 provided that f(x0) = g(x0). For a natural number n, the
functions f and g are said to have contact of order n at x0 provided that f and g have n
derivatives and

f (k)(x0) = g(k)(x0) 0 ≤ k ≤ n

Theorem 7.1 (Taylor Polynomial). Let I be a neighborhood of the point x0 and let n be a
nonnegative integer. Suppose that the function f has n derivatives. Then there is a unique
polynomial of degree at most n that has contact of order n with the function f at x0. This
polynomial is defined by the formula

pn(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)

n

7.2 The Lagrange Remainder Theorem
Using the Cauchy Mean Value Theorem, we can define the Lagrange Remainder Theorem.

Theorem 7.2 (Lagrange Remainder Theorem). Let I be a neighborhood of the point x0 and
let n be a non-negative integer. Suppose that the function f has n+1 derivatives. Then, for
each point x ̸= x0 in i, there is a point c strictly between x and x0 such that

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k
+

f (n+1)(c)

(n+ 1)!
(x− x0)

n+1

7.3 The Convergence of Taylor Polynomials
For some sequence of numbers {ak} that is indexed by the nonnegative integers, we define

sn =

n∑
k=0

ak

and obtain a new sequence {sn} called the sequence of partial sums.
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Let I be a neighborhood of the point x0, and suppose that the function f has derivatives
of all orders. The nth Taylor Polynomial for f at x0 is defined by

pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

Using our partial sum notation, if x is a point in I at which

lim
n→∞

pn(x) = f(x)

we write

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k

However, this only holds if

lim
n→∞

[f(x)− pn(x)] = 0

Theorem 7.3 (Useful Lemma). For any number c,

lim
n→∞

cn

n!
= 0

Theorem 7.4. Let I be a neighborhood of the point x0 and suppose that the function f has
derivatives of all orders. Suppose also that there are positive numbers r and M such that
the interval [x0 − r, x0 + r] is contained in I and that for every natural number n and every
point x in the aforementioned interval,∣∣∣f (n)(x)

∣∣∣ ≤ Mn

Then

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k if |x− x0| ≤ r

Theorem 7.5 (Corollary).

ex =

∞∑
k=0

xk

k!

cosx =

∞∑
k=0

(−1)
k

(2k)!

7.4 The Cauchy Integral Remainder Theorem
If I is a neighborhood of the point x0 and the function f is differentiable, then, by the Mean
Value Theorem, for each point x in I, there is a point c strictly between x and x0 such that

f(x) = f(x0) + f ′(c)(x− x0)

If we further assume that the derivative f ′ is continuous, then, by the first fundamental
theorem,

f(x) = f(x0) +

∫ x

x0

f ′(t) dt
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Theorem 7.6 (The Cauchy Integral Remainder Formula). Let I be a neighborhood of the
point x0 and n be a natural number. Suppose that the function f has n+1 derivatives, and
that f (n+1) is continuous. Then for each point x ∈ I,

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k
+

1

n!

∫ x

x0

f (n+1)(t)(x− t)
n
dt

Theorem 7.7 (The Ratio Lemma for Sequences). Suppose that {cn} is a sequence of nonzero
numbers with the property that

lim
n→∞

|cn+1|
|cn|

= f

1. If f < 1, then

lim
n→∞

cn = 0

2. If f > 1, then the sequence is unbounded.

7.5 The Weierstrass Approximation Theorem
Theorem 7.8 (The Weierstrass Approximation Theorem). Let I be a closed bounded interval
and suppose that the function f is continuous. Then for each positive number ϵ, there is a
polynomial p such that

|f(x)− p(x)| < ϵ for all points x ∈ I

8 Sequences and Series of Functions
8.1 Sequences and Series of Numbers
Definition 8.1 (The Cauchy Convergence Criterion for Sequences). A sequence of numbers
{an} is said to be a Cauchy Sequence provided that for each positive number ϵ there is an
index N such that

|an − am| < ϵ if n ≥ N and m ≥ N

1. Every convergent sequence if Cauchy.
2. Every Cauchy Sequence is bounded.

Theorem 8.1 (The Cauchy Convergence Criterion for Sequences). A sequence of numbers
converges iff it is a Cauchy Sequence.

Theorem 8.2 (Convergence Tests for Series). The following tests help prove convergence:
1. Suppose that the series

∑∞
n=1 an converges. Then

lim
n→∞

an = 0

Undergraduate Applied Analysis One 18 James Meiss



Undergraduate Applied Analysis One Zoe Farmer

2. For a number f such that |r| < 1,

∞∑
k=0

rk =
1

1− r

3. (The Comparison Test) Suppose that {ak} and {bk} are sequences of numbers such
that for index k,

0 ≤ ak ≤ bk

(a) The series
∑∞

k=0 ak converges if the series
∑∞

k=0 bk converges.
(b) The series

∑∞
k=0 bk diverges if the series

∑∞
k=0 ak diverges.

4. (The Integral Test) Let {ak} be a sequence of nonnegative numbers and suppose that
the function f is continuous and monotonically decreasing and has the property that

f(k) = ak ∀k

Then the series
∑∞

k=0 ak is convergent iff the sequence of integrals{∫ n

1

f(x) dx

}
is bounded.

5. (The p-Test) For a positive number p, the series

∞∑
k=1

1

kp

converges iff p > 1.
6. (The Alternating Series Test) Suppose that {ak} is a monotonically decreasing sequence

of nonnegative numbers that converges to 0. Then the series
∞∑
k=1

(−1)
k+1

ak

converges.
7. (The Cauchy Convergence Criterion for Series) The series

∑∞
k=1 ak converges iff for

each positive number ϵ there is an index N such that

|an+1 + · · ·+ an+k| ≤ ϵ

8. (The Absolute Convergence Test) An absolutely convergent series converges, that is,
the series

∑∞
k=1 ak converges if the series

∑∞
k=1 |ak| converges.

9. For the series
∑∞

k=1 ak, suppose that there is a number r with 0 ≤ r < 1 and an index
N such that

|an+1| ≤ r|an| ∀n ≥ N
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then the series
∑∞

k=1 ak is absolutely convergent.
10. (The Ratio Test for Series) For the series

∑∞
k=1 ak, suppose that

lim
n→∞

|an+1|
|an|

= f

(a) If f < 1, the series converges absolutely.
(b) If f > 1, the series diverges.

8.2 Pointwise Convergence of Sequences of Functions
Definition 8.2. Given a function f and a sequence of function {fn : D → R}, we say that
the sequence converges pointwise to f , provided that for each point x ∈ D,

lim
n→∞

fn(x) = f(x)

8.3 Uniform Convergence of Sequences of Functions
Definition 8.3. Given a function f and a sequence of functions {fn}, the sequence is said to
converge uniformly to f provided that for each positive number ϵ there is an index N such
that,

|f(x)− fn(x)| < ϵ ∀n ≥ N, x ∈ D

Definition 8.4. The sequence of functions is said to be uniformly Cauchy provided that for
each positive number ϵ, there is an index N such that

|fn+k(x)− fn(x)| < ϵ

for every index n ≥ N , every natural number k, and every point x ∈ D.

Theorem 8.3 (The Weierstrass Uniform Convergence Criterion). The sequence of function
{fn} converges uniformly to a function f iff the sequence is uniformly Cauchy.

8.4 The Uniform Limit of Functions
Theorem 8.4 (Uniformly Convergent Sequences of Continuous Functions). Suppose that {fn}
is a sequence of continuous functions that converges uniformly to the function f . Then the
limit function f also is continuous.

Theorem 8.5 (Uniformly Convergent Sequences of Integrable Functions). Suppose that {fn}
is a sequence of integrable functions that converges uniformly to the function f . Then the
limit function f also is integrable. Moreover,

lim
n→∞

[∫ b

a

fn

]
=

∫ b

a

f

Theorem 8.6 (Uniformly Convergent Sequences of Differentiable Functions). Let I be an
open interval. Suppose that {fn} is a sequence of continuously differentiable functions that
has the following two properties:
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1. The sequence {fn} converges pointwise on I to the function f , and
2. The derived sequence {f ′

n} converges uniformly on I to the function g.
Then the function f is continuously differentiable, and

f ′(x) = g(x) ∀x ∈ I

Theorem 8.7 (Uniformly Convergent Sequences of Differentiable Functions (2)). Let I be an
open interval. Suppose that {fn} is a sequence of continuously differentiable functions that
has the following two properties:

1. The sequence converges pointwise on I to the function f , and
2. The derived sequence {f ′

n} is uniformly Cauchy on I.
Then the function f is continuously differentiable, and for each x ∈ I

lim
n→∞

f ′
n(x) = f ′(x)
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