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1 Integration By Parts
Formula
u · v −

∫
v · du

Example ∫
x3 · sin(x) · dx

u dv
x3 sin(x)
3x2 cos(x)
6x −sin(x)
6 −cos(x)
0 sin(x)

x3 · cos(x)−
∫

3x2 · cos(x) · dx

x3 · cos(x) + 3x2 · sin(x)−
∫

−6x · sin(x) · dx

x3 · cos(x) + 3x2 · sin(x) + 6x · cos(x)−
∫

6 · cos(x) · dx

x3 · cos(x) + 3x2 · sin(x) + 6x · cos(x)− 6 · sin(x)

(1)

2 Trigonometric Integrals and Substitutions
Trigonometric Identities

1. sec(x) =
1

cos(x)

2. csc(x) =
1

sec(x)

3. cot(x) =
1

tan(x)

4. sin2(x) + cos2(x) = 1

5. tan2(x) + 1 = sec2(x)

6. Double Angles
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(a) sin2(x) =
1

2
· (1− cos(2x))

(b) cos2(x) =
1

2
· (1 + cos(2x))

7. d

dx
tan(x) = sec2(x)

8. d

dx
sec(x) = sec(x) · tan(x)

9.
∫
sec(x) · dx = ln|sec(x) + tan(x)|+ C

10.
∫
tan(x) · dx = −log(cos(x)) = ln|sec(x)|+ C

11. Substitutions

Integrand Substitution Boundaries Trig Identity
√
a2 − x2 x = a · sin(Θ)

Π

2
≤ Θ ≤ Π

2
sin2(Θ) + cos2(Θ) = 1

√
a2 + x2 x = a · tan(Θ)

−Π

2
< Θ <

Π

2
tan2(x) + 1 = sec2(x)

√
x2 − a2 x = a · sec(Θ) 0 < Θ <

Π

2
,Π < Θ <

3Π

2
tan2(x) + 1 = sec2(x)

Examples ∫
x√

1− x2
· dx

x = sin(Θ)

x2 = sin2(Θ)

dx = cos(Θ)∫
sin(Θ)√

1− sin2(Θ)
· dΘ∫

sin(Θ)√
cos2(Θ)

· dΘ∫
sin(Θ)

cos(Θ)
· dΘ∫

tan(Θ) · dΘ

ln|sec(Θ)|+ C

ln|sec(arcsin(x))|+ C

(2)

3 Partial Fraction Decomposition
This is meant to simplify integrals of rational functions.

Rational functions are ratios of polynomials in the form P (x)

Q(x)
while P(x) and Q(x) are arbitrary poly-

nomials. PROPER iff (degree of Q(x) > degree of P(x))
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Long Division
Suppose Q(x) ≤ P (x)

After long division you will get P (x)

Q(x)
= S(x) +

R(x)

Q(x)
while R(x) is the remainder (R(x) is ALWAYS less

than Q(x)).
PFD: Replacing proper fractions by the sum of simpler fractions that we can integrate.
There are two ways to solve for A and B

1. Zero out one or the other (see ex.)

2. Expand and collect terms (see ex.)

Example ∫
x

(x+ 1)(x− 2)
· dx

A

x+ 1
+

B

x− 2
x

(x+ 1)(x− 2)
=

A

x+ 1
+

B

x− 2

(((((((
(x+ 1)(x− 2) · x
(((((((
(x+ 1)(x− 2)

=
����(x+ 1)(x− 2) ·A

���x+ 1
+

(x+ 1)����(x− 2) ·B
���x− 2

x = A · (x− 2) +B · (x+ 1)

x = 2 ∴ 2 = 3B ∴ B =
2

3
, A =

1

3
or

x = Ax− 2A+Bx+B

1 = A+B

0 = B − 2A

B = 2A

A =
1

3
, B =

2

3

(3)

Cases

1. For each 1st order, non-repeated factor, you add to the PFD a term of the form A

ax+ b

A0

a0x+ b0
+

A1

a1x+ b1
+ ...+

An

anx+ bn

2. For each 1st order factor (ax+ b) repeated n times, [(ax+ b)n] add it to the PFD n times.

A0

a0x+ b0
+

A1

(a1x+ b1)2
+ ...+

An

(anx+ bn)n

3. For each irreducible 2nd order, non-repeated factor [(ax2 + bx + c) for (b2 − 4ac) < 0] add it to the
PFD one term.

Ax+B

ax2 + bx+ c
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4. For each irreducible 2nd order, repeated factor [(ax2 + bx+ c)n for (b2 − 4ac) < 0] add it to the PFD
n terms.

A0x+B0

(ax2 + bx+ c)1
+

A1x+B1

(ax2 + bx+ c)2
+ ...+

Anx+Bn

(ax2 + bx+ c)n

4 Sequences
A sequence is an ordered, infinite list of numbers.

lim
n→∞

a1, a2, a3, ..., an

{an}∞n=1 indicates a sequence.
We can think of a sequence as a function:

n ∈ N and f(n) = an
Two types of sequence definition

1. Linearly: an =
n

n+ 1
so a1 =

1

2
, a2 =

2

3
, etc.

2. Recursively (Fibonacci): {fn}∞1 f1 = 1, f2 = 2, fn = fn−1 + fn−2

A sequence can also be pictured by graphing.

Squeeze Theorem (Sammich Theorem)
Let {an}∞1 , {bn}∞1 , {cn}∞1 and an ≤ bn ≤ cn
If lim

n→∞
an = L and lim

n→∞
cn = L then lim

n→∞
bn = L

5 Series
A series is a sum of an infinite sequence of terms.

Let {an}∞n=1, the series with these terms is
∞∑

n=1

an

It is possible for a sum of an infinite number of terms to add up to a finite number. This is called a convergent
series.

Consider:

s1 = a1

s2 = a1 + a2

sn = a1 + a2 + ...+ an

(4)

sn is called the sequence of partial sums ({sn}∞n=1) and the convergence of the series depends on its conver-
gence.

If lim
n→∞

sn = L then it’s convergent.
If lim

n→∞
sn = (+∞,−∞) then it’s divergent.

If lim
n→∞

does not exist, then the test is inconclusive.
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Geometric Series
∞∑

n=1

a · rn−1 where a ̸= 0 and r = the ratio of the series

If −1 < r < 1 then the series is convergent to a

1− r
.

If r ≥ 1 then it is divergent.
If r ≤ −1 then it is not regular (neither convergent or divergent).

Shifting range of series
Formula:

∞∑
n=x

a · rn+y

∞∑
n=x

a · rn−x+y+x

∞∑
n=x

a · rn−x · ry+x

∞∑
n=x

rn−1(a(ry+x))

a · ry+x

1− r

=
a · ry+x

1− r

(5)

Harmonic Series
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ ...+

1

n
is DIVERGENT

∞∑
n=1

1

nα
is called the generalized harmonic series. It is convergent if α > 1 and divergent if α ≤ 1.

6 Series Tests
Divergence Test (Test for un-convergence)

If
∞∑

n=1

an is convergent, then lim
n→∞

an = 0

If lim
n→∞

an ̸= 0, then the series may or may not converge...

Integral Test
If an = f(x) and the function is continuous, decreasing, and positive on [1,+∞), then the series is convergent

iff the integral of the function is convergent. Iff
∫∞
1

f(x) · dx is convergent then
∞∑

n=1

an is convergent and

vice=versa with divergence.
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Comparison Test

Let
∞∑

n=1

an and
∞∑

n=1

bn be two series with positive terms. If an ≤ bn (for all n, or for all n ≥ N) and
∞∑

n=1

bn

converges, then
∞∑

n=1

an converges as well. If an ≥ bn (for all n, or for all n ≥ N) and
∞∑

n=1

bn diverges, then
∞∑

n=1

an diverges.

Limit Comparison Test

Let
∞∑

n=1

an and
∞∑

n=1

bn be two series with positive terms. If lim
n→∞

an
bn

= C, c ̸= [0,∞), then the two series are

either both convergent or divergent.

Alternating Series Test (Leibniz’ Test)
This ONLY applies to alternating series
∞∑

n=1

(−1)nan or
∞∑

n=1

(−1)n−1an where an ≥ 0.

if lim
n→∞

an = 0 and an is decreasing for all n then the series is convergent.

Absolute Values Test

For any series
∞∑

n=1

an you must consider the absolute value series
∞∑

n=1

|an|. If the series of absolute values

is convergent, it is called absolutely convergent. Any series that is absolutely convergent is also convergent
(−|an| ≤ an ≤ |an|). There exist many series that are convergent, but NOT absolutely convergent (these are
called conditionally convergent). For example, an alternating harmonic series is conditionally convergent.

Ratio Test
∞∑

n=1

an

if:
lim
n→∞

|an+1

an
| = L < 1 then the series is absolutely convergent

lim
n→∞

|an+1

an
| = L > 1 the the series is not absolutely convergent

lim
n→∞

|an+1

an
| = 1 then the test is inconclusive

Root Test

lim
n→∞

n
√
|an| = lim

n→∞
(|an|)

1

n = L

If:
L < 1 then the series is absolutely convergent L > 1 then the series is not absolutely convergent
L = 1 then the test is inconclusive
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7 Power Series
∞∑

n=1

1

np
is convergent if p > 1 and divergent if p ≤ 1

Representing Functions as Power Series

f(x) =
1

1− x
=

∞∑
n=0

xn where |x| < 1 (geometric series a = 1, ratio ofx)

This is a power series centered at 0 with a radius of convergence of R = 1

If a power series
∞∑

n=0

cn(x−a)n has a radius of convergence R > 0 then the interval of convergence |x− a| < R

The function f(x) =

∞∑
n=0

cn(x− a)n is differentiable inside the interval of convergence.

f ′(x) =

∞∑
n=0

cn · n · (x− a)n−1 and
∫
f(x) · dx =

∞∑
n=0

cn
(x− a)n+1

n+ 1
+ C

Examples

f(x) =
1

1− x2

1

1− (−x2)

u = (−x2)

1

1− u
∞∑

n=0

un

∞∑
n=0

(−x2)n

∞∑
n=0

(−1)n · x2n

(6)
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f(x) =
1

3 + x
1

3 · (1 + x
3 )

1

3
· 1

1 + x
3

u =
−x

3

1

3

∞∑
n=0

(
−x

3

)n

1

3

∞∑
n=0

(
−1

3

)n

· xn

∞∑
n=0

1

3
· (−1)n

3n
· xn

∞∑
n=0

(−1)n

3n+1
· xn

(7)

Interval of convergence = |x| < 3

f(x) =
1

(1− x)2
1

→ 1− 2x− x2

d

dx

1

1− x

d

dx

∞∑
n=0

xn, |x| < 1

∞∑
n=0

n · xn−1

(8)

8 Taylor and MacLaurin Series
(Taylor series have arbitrary centers while MacLaurin are centered at 0)
Question: How do we know if a function has a power series representation? And for what values of x is it
meaningful?

Assume:
∞∑

n=0

cn(x− a)n for |x− a| < R

In other words: f(x) = c0 + c1 · (x− a) + c2 · (x− a)2

Evaluate cn at x = a. cn = f(n)(a)
n! while f (n)(x) is the nth derivative of f(x)

Theorem: If a function has a power series representation (or power series expansion) centered at a, i.e.
∞∑

n=0

cn(x− a)n, |x− a| < R, then the coefficients are given by cn = f(n)(a)
n! .

These are all Taylor series centered at a. If a = 0, then it is called a MacLaurin series.
Need:

The function to be infinitely differentiable inside the interval |x− a| < R
Take partial sums in the power series (Tn(x))
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Tn(x) = f(a) + f ′(a)(x− a) + ...+ f(n)(a)(x−a)n

n!
lim
n→∞

Tn(x) = f(x)

Consider f(x)− Tn(x) = Rn(x) where Rn(x) is the remainder of order n of the Taylor series.
f(x) = lim

n→∞
Tn(x) is equivalent to saying lim

n→∞
Rn(x) = 0

Theorem: If f(x) = Tn(x) + Rn(x) where Tn(x) is a Taylor polynomial of degree n of f(x) at a, and if

lim
n→∞

Rn(x) = 0 for all |x− a| < R, then f(x) =

∞∑
n=0

f (n)(a)(x− a)n

n!

Lagrange’s Formula
The tricky bit is to show lim

n→∞
Rn(x) = 0

In this case it is useful to consider special representations of remainder functions
Formula: If a function has at least n+ 1 derivatives in some interval I that contains the center, then there
exists a number Z such that x ≤ Z ≤ a and Rn(x) =

f(n+1)(Z)(x−a)n+1

(n+1)!

If:
x = 0, then everything= 0
x < 0, then x < Z < 0
x > 0, then 0 < Z < x

Application of Taylor Series
Given a function infinitely differentiable around x = a, to find its Taylor series centered at a:

1. Computer the Taylor coefficients cn = f(n)(a)
n! and write down the corresponding Taylor series

∞∑
n=0

cn(x−

a)n

2. Find the radius of convergence and interval of convergence |x− a| < R

3. Apply Lagrange’s formula for the remainder Rn(x) =
f(n+1)(Z)(x−a)n+1

(n+1)!

4. f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n
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Example
Find the MacLaurin series of f(x) = ex and its radius of convergence.

1

f (n)(0) = e0 = 1

cn =
1

n!
∞∑

n=0

xn

n!

2

Ratio Test of
∞∑

n=0

xn

n!

lim
n→∞

∣∣∣∣∣ x��n+1 ·��(n!)

(n+ 1)�! ·��xn

∣∣∣∣∣
lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0 regardless of x

By the ratio test, the series is convergent for all x ∈ R
The radius of convergence is R = ∞

3

0 < Z < x

Rn(x) =
eZ · xn+1

(n+ 1)!

if x > 0, then 0 < Z < x and by the Squeeze Theorem, it is 0

if x < 0, then 0 < Z < x and by the Squeeze Theorem, it is 0

(9)
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