Calculus II Notes

Zoe Farmer

February 26, 2024

1 Integration By Parts

Formula
$u \cdot v-\int v \cdot d u$

Example

$$
\left.\begin{array}{r}
\int x^{3} \cdot \sin (x) \cdot d x \\
u_{1} \tag{1}\\
x^{3} \\
3 x^{2} \\
6 x
\end{array}\right)
$$

2 Trigonometric Integrals and Substitutions

Trigonometric Identities

1. $\sec (x)=\frac{1}{\cos (x)}$
2. $\csc (x)=\frac{1}{\sec (x)}$
3. $\cot (x)=\frac{1}{\tan (x)}$
4. $\sin ^{2}(x)+\cos ^{2}(x)=1$
5. $\tan ^{2}(x)+1=\sec ^{2}(x)$
6. Double Angles
(a) $\sin ^{2}(x)=\frac{1}{2} \cdot(1-\cos (2 x))$
(b) $\cos ^{2}(x)=\frac{1}{2} \cdot(1+\cos (2 x))$
7. $\frac{d}{d x} \tan (x)=\sec ^{2}(x)$
8. $\frac{d}{d x} \sec (x)=\sec (x) \cdot \tan (x)$
9. $\int \sec (x) \cdot d x=\ln |\sec (x)+\tan (x)|+C$
10. $\int \tan (x) \cdot d x=-\log (\cos (x))=\ln |\sec (x)|+C$
11. Substitutions

$$
\begin{array}{l|l|l|l}
\text { Integrand } & \text { Substitution } & \text { Boundaries } & \text { Trig Identity } \\
\sqrt{a^{2}-x^{2}} & x=a \cdot \sin (\Theta) & \frac{\Pi}{2} \leq \Theta \leq \frac{\Pi}{2} & \sin ^{2}(\Theta)+\cos ^{2}(\Theta)=1 \\
\sqrt{a^{2}+x^{2}} & x=a \cdot \tan (\Theta) & \frac{-\Pi}{2}<\Theta<\frac{\Pi}{2} & \tan ^{2}(x)+1=\sec ^{2}(x) \\
\sqrt{x^{2}-a^{2}} & x=a \cdot \sec (\Theta) & 0<\Theta<\frac{\Pi}{2}, \Pi<\Theta<\frac{3 \Pi}{2} & \tan ^{2}(x)+1=\sec ^{2}(x)
\end{array}
$$

Examples

$$
\begin{array}{r}
\int \frac{x}{\sqrt{1-x^{2}}} \cdot d x \\
x=\sin (\Theta) \\
x^{2}=\sin ^{2}(\Theta) \\
d x=\cos (\Theta) \\
\int \frac{\sin (\Theta)}{\sqrt{1-\sin ^{2}(\Theta)}} \cdot d \Theta \\
\int \frac{\sin (\Theta)}{\sqrt{\cos ^{2}(\Theta)}} \cdot d \Theta \tag{2}\\
\int \frac{\sin (\Theta)}{\cos (\Theta)} \cdot d \Theta \\
\int \tan (\Theta) \cdot d \Theta \\
\ln |\sec (\Theta)|+C \\
\ln |\sec (\arcsin (x))|+C
\end{array}
$$

3 Partial Fraction Decomposition

This is meant to simplify integrals of rational functions.
Rational functions are ratios of polynomials in the form $\frac{P(x)}{Q(x)}$ while $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are arbitrary polynomials. PROPER iff (degree of $\mathrm{Q}(\mathrm{x})>$ degree of $\mathrm{P}(\mathrm{x})$)

Long Division

Suppose $Q(x) \leq P(x)$
After long division you will get $\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}$ while $\mathrm{R}(\mathrm{x})$ is the remainder ($\mathrm{R}(\mathrm{x})$ is ALWAYS less than $\mathrm{Q}(\mathrm{x})$).
PFD: Replacing proper fractions by the sum of simpler fractions that we can integrate.
There are two ways to solve for A and B

1. Zero out one or the other (see ex.)
2. Expand and collect terms (see ex.)

Example

$$
\begin{array}{r}
\int \frac{x}{(x+1)(x-2)} \cdot d x \\
\frac{A}{x+1}+\frac{B}{x-2} \\
\frac{x+1)(x-2) \cdot x}{(x+1)(x-2)}=\frac{(x+1)(x-2) \cdot A}{x+1}+\frac{(x+1)(x-2) \cdot B}{x+1}+\frac{B}{x-2} \\
x=A \cdot(x-2)+B \cdot(x+1) \\
x=2 \therefore 2=3 B \therefore B=\frac{2}{3}, A=\frac{1}{3} \\
\therefore \therefore=A x-2 A+B x+B \tag{3}\\
1=A+B \\
0=B-2 A \\
B=2 A \\
A=\frac{1}{3}, B=\frac{2}{3}
\end{array}
$$

Cases

1. For each $1^{s t}$ order, non-repeated factor, you add to the PFD a term of the form $\frac{A}{a x+b}$

$$
\frac{A_{0}}{a_{0} x+b_{0}}+\frac{A_{1}}{a_{1} x+b_{1}}+\ldots+\frac{A_{n}}{a_{n} x+b_{n}}
$$

2. For each $1^{s t}$ order factor $(a x+b)$ repeated n times, $\left[(a x+b)^{n}\right]$ add it to the PFD n times.

$$
\frac{A_{0}}{a_{0} x+b_{0}}+\frac{A_{1}}{\left(a_{1} x+b_{1}\right)^{2}}+\ldots+\frac{A_{n}}{\left(a_{n} x+b_{n}\right)^{n}}
$$

3. For each irreducible $2^{\text {nd }}$ order, non-repeated factor $\left[\left(a x^{2}+b x+c\right)\right.$ for $\left.\left(b^{2}-4 a c\right)<0\right]$ add it to the PFD one term.

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

4. For each irreducible $2^{\text {nd }}$ order, repeated factor $\left[\left(a x^{2}+b x+c\right)^{n}\right.$ for $\left.\left(b^{2}-4 a c\right)<0\right]$ add it to the PFD n terms.

$$
\frac{A_{0} x+B_{0}}{\left(a x^{2}+b x+c\right)^{1}}+\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
$$

4 Sequences

A sequence is an ordered, infinite list of numbers.
$\lim _{n \rightarrow \infty} a_{1}, a_{2}, a_{3}, \ldots, a_{n}$
$\left\{a_{n}\right\}_{n=1}^{n \rightarrow \infty}$ indicates a sequence.
We can think of a sequence as a function:
$n \in \mathbb{N}$ and $f(n)=a_{n}$
Two types of sequence definition

1. Linearly: $a_{n}=\frac{n}{n+1}$ so $a_{1}=\frac{1}{2}, a_{2}=\frac{2}{3}$, etc.
2. Recursively (Fibonacci): $\left\{f_{n}\right\}_{1}^{\infty} f_{1}=1, f_{2}=2, f_{n}=f_{n-1}+f_{n-2}$

A sequence can also be pictured by graphing.

Squeeze Theorem (Sammich Theorem)
Let $\left\{a_{n}\right\}_{1}^{\infty},\left\{b_{n}\right\}_{1}^{\infty},\left\{c_{n}\right\}_{1}^{\infty}$ and $a_{n} \leq b_{n} \leq c_{n}$
If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} c_{n}=L$ then $\lim _{n \rightarrow \infty} b_{n}=L$

5 Series

A series is a sum of an infinite sequence of terms.
Let $\left\{a_{n}\right\}_{n=1}^{\infty}$, the series with these terms is $\sum_{n=1}^{\infty} a_{n}$
It is possible for a sum of an infinite number of terms to add up to a finite number. This is called a convergent series.

Consider:

$$
\begin{align*}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \tag{4}\\
& s_{n}=a_{1}+a_{2}+\ldots+a_{n}
\end{align*}
$$

s_{n} is called the sequence of partial sums $\left(\left\{s_{n}\right\}_{n=1}^{\infty}\right)$ and the convergence of the series depends on its convergence.

If $\lim _{n \rightarrow \infty} s_{n}=L$ then it's convergent.
If $\lim _{n \rightarrow \infty} s_{n}=(+\infty,-\infty)$ then it's divergent.
If $\lim _{n \rightarrow \infty}$ does not exist, then the test is inconclusive.

Geometric Series

$\sum_{n=1}^{\infty} a \cdot r^{n-1}$ where $a \neq 0$ and $r=$ the ratio of the series
If $-1<r<1$ then the series is convergent to $\frac{a}{1-r}$.
If $r \geq 1$ then it is divergent.
If $r \leq-1$ then it is not regular (neither convergent or divergent).

Shifting range of series

Formula:

$$
\begin{array}{r}
\sum_{n=x}^{\infty} a \cdot r^{n+y} \\
\sum_{n=x}^{\infty} a \cdot r^{n-x+y+x} \\
\sum_{n=x}^{\infty} a \cdot r^{n-x} \cdot r^{y+x} \tag{5}\\
\sum_{n=x}^{\infty} r^{n-1}\left(a\left(r^{y+x}\right)\right) \\
\frac{a \cdot r^{y+x}}{1-r} \\
=\frac{a \cdot r^{y+x}}{1-r}
\end{array}
$$

Harmonic Series
$\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ is DIVERGENT
$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ is called the generalized harmonic series. It is convergent if $\alpha>1$ and divergent if $\alpha \leq 1$.

6 Series Tests

Divergence Test (Test for un-convergence)
If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series may or may not converge...
Integral Test
If $a_{n}=f(x)$ and the function is continuous, decreasing, and positive on $[1,+\infty)$, then the series is convergent iff the integral of the function is convergent. Iff $\int_{1}^{\infty} f(x) \cdot d x$ is convergent then $\sum_{n=1}^{\infty} a_{n}$ is convergent and vice $=$ versa with divergence.

Comparison Test

Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series with positive terms. If $a_{n} \leq b_{n}$ (for all n, or for all $n \geq N$) and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges as well. If $a_{n} \geq b_{n}$ (for all n, or for all $n \geq N$) and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Limit Comparison Test

Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=C, c \neq[0, \infty)$, then the two series are either both convergent or divergent.

Alternating Series Test (Leibniz' Test)

This ONLY applies to alternating series
$\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ where $a_{n} \geq 0$.
if $\lim _{n \rightarrow \infty} a_{n}=0$ and a_{n} is decreasing for all n then the series is convergent.

Absolute Values Test

For any series $\sum_{n=1}^{\infty} a_{n}$ you must consider the absolute value series $\sum_{n=1}^{\infty}\left|a_{n}\right|$. If the series of absolute values is convergent, it is called absolutely convergent. Any series that is absolutely convergent is also convergent $\left(-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|\right)$. There exist many series that are convergent, but NOT absolutely convergent (these are called conditionally convergent). For example, an alternating harmonic series is conditionally convergent.

Ratio Test
$\sum_{n=1}^{\infty} a_{n}$
if:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$ then the series is absolutely convergent
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ the the series is not absolutely convergent
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$ then the test is inconclusive

Root Test
$\lim _{\substack{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left(\left|a_{n}\right|\right)^{\frac{1}{n}}=L$
If:
$L<1$ then the series is absolutely convergent $\quad L>1$ then the series is not absolutely convergent $L=1$ then the test is inconclusive

7 Power Series

$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$
Representing Functions as Power Series
$f(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ where $|x|<1$ (geometric series $a=1$, ratio of x)
This is a power series centered at 0 with a radius of convergence of $R=1$
If a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence $R>0$ then the interval of convergence $|x-a|<R$
The function $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable inside the interval of convergence.
$f^{\prime}(x)=\sum_{n=0}^{\infty} c_{n} \cdot n \cdot(x-a)^{n-1}$ and $\int f(x) \cdot d x=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}+C$
Examples

$$
\begin{array}{r}
f(x)=\frac{1}{1-x^{2}} \\
\frac{1}{1-\left(-x^{2}\right)} \\
u=\left(-x^{2}\right) \\
\frac{1}{1-u} \\
\sum_{n=0}^{\infty} u^{n} \tag{6}\\
\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n} \\
\sum_{n=0}^{\infty}(-1)^{n} \cdot x^{2 n}
\end{array}
$$

$$
\begin{array}{r}
f(x)=\frac{1}{3+x} \\
\frac{1}{3 \cdot\left(1+\frac{x}{3}\right)} \\
\frac{1}{3} \cdot \frac{1}{1+\frac{x}{3}} \\
u=\frac{-x}{3} \\
\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{-x}{3}\right)^{n} \tag{7}\\
\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{-1}{3}\right)^{n} \cdot x^{n} \\
\sum_{n=0}^{\infty} \frac{1}{3} \cdot \frac{(-1)^{n}}{3^{n}} \cdot x^{n} \\
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} \cdot x^{n}
\end{array}
$$

Interval of convergence $=|x|<3$

$$
\begin{array}{r}
f(x)=\frac{1}{(1-x)^{2}} \frac{1}{\rightarrow} \frac{1-2 x-x^{2}}{\frac{d}{d x} \frac{1}{1-x}} \\
\frac{d}{d x} \sum_{n=0}^{\infty} x^{n},|x|<1 \\
\sum_{n=0}^{\infty} n \cdot x^{n-1} \tag{8}
\end{array}
$$

8 Taylor and MacLaurin Series

(Taylor series have arbitrary centers while MacLaurin are centered at 0)
Question: How do we know if a function has a power series representation? And for what values of x is it meaningful?

$$
\text { Assume: } \sum_{n=0}^{\infty} c_{n}(x-a)^{n} \text { for }|x-a|<R
$$

In other words: $f(x)=c_{0}+c_{1} \cdot(x-a)+c_{2} \cdot(x-a)^{2}$
Evaluate c_{n} at $x=a . c_{n}=\frac{f^{(n)}(a)}{n!}$ while $f^{(n)}(x)$ is the $n^{t h}$ derivative of $f(x)$
Theorem: If a function has a power series representation (or power series expansion) centered at a, i.e. $\sum_{n=0}^{\infty} c_{n}(x-a)^{n},|x-a|<R$, then the coefficients are given by $c_{n}=\frac{f^{(n)}(a)}{n!}$.
These are all Taylor series centered at a. If $a=0$, then it is called a MacLaurin series.
Need:
The function to be infinitely differentiable inside the interval $|x-a|<R$
Take partial sums in the power series $\left(T_{n}(x)\right)$

$$
\begin{aligned}
& T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\ldots+\frac{f^{(n)}(a)(x-a)^{n}}{n!} \\
& \lim _{n \rightarrow \infty} T_{n}(x)=f(x)
\end{aligned}
$$

Consider $f(x)-T_{n}(x)=R_{n}(x)$ where $R_{n}(x)$ is the remainder of order n of the Taylor series.
$f(x)=\lim _{n \rightarrow \infty} T_{n}(x)$ is equivalent to saying $\lim _{n \rightarrow \infty} R_{n}(x)=0$
Theorem: If $f(x)=T_{n}(x)+R_{n}(x)$ where $T_{n}(x)$ is a Taylor polynomial of degree n of $f(x)$ at a, and if $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for all $|x-a|<R$, then $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}$

Lagrange's Formula

The tricky bit is to show $\lim _{n \rightarrow \infty} R_{n}(x)=0$
In this case it is useful to consider special representations of remainder functions
Formula: If a function has at least $n+1$ derivatives in some interval I that contains the center, then there exists a number Z such that $x \leq Z \leq a$ and $R_{n}(x)=\frac{f^{(n+1)}(Z)(x-a)^{n+1}}{(n+1)!}$
If:
$x=0$, then everything $=0$
$x<0$, then $x<Z<0$
$x>0$, then $0<Z<x$

Application of Taylor Series

Given a function infinitely differentiable around $x=a$, to find its Taylor series centered at a :

1. Computer the Taylor coefficients $c_{n}=\frac{f^{(n)}(a)}{n!}$ and write down the corresponding Taylor series $\sum_{n=0}^{\infty} c_{n}(x-$ a) ${ }^{n}$
2. Find the radius of convergence and interval of convergence $|x-a|<R$
3. Apply Lagrange's formula for the remainder $R_{n}(x)=\frac{f^{(n+1)}(Z)(x-a)^{n+1}}{(n+1)!}$
4. $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$

Example

Find the MacLaurin series of $f(x)=e^{x}$ and its radius of convergence.

$$
\begin{array}{r}
f^{(n)}(0)=e^{0}=1 \\
c_{n}=\frac{1}{n!} \\
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{array}
$$

$$
\text { Ratio Test of } \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} \cdot(n!)}{(n+1)!\cdot x^{n t}}\right| \tag{9}
\end{equation*}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=0 \text { regardless of } \mathrm{x}
$$

By the ratio test, the series is convergent for all $x \in \mathbb{R}$ The radius of convergence is $R=\infty$

$$
\begin{array}{r}
\boxed{3} \\
0<Z<x \\
R_{n}(x)=\frac{e^{Z} \cdot x^{n+1}}{(n+1)!}
\end{array}
$$

if $x>0$, then $0<Z<x$ and by the Squeeze Theorem, it is 0 if $x<0$, then $0<Z<x$ and by the Squeeze Theorem, it is 0

