Calc III Notes (APPM 2350)

Zoe Farmer

February 26, 2024

Contents

Calculus III Contents 3
1 Three Dimensional Space 4
1.1 Circles and Spheres 4
1.2 Distance Formula 4
2 Vectors 5
2.1 Scalar Multiples of Vectors 5
2.2 Addition and Subtraction of Vectors 5
2.3 Vector Properties 5
2.3.1 Magnitude 5
2.3.2 Scalar Multiplication 5
2.4 Inner Product (Dot Product) 6
2.4.1 Rules of Dot Products 6
2.4.2 Example - Dot Product 6
2.5 Projections 6
2.5.1 Example - Projection 7
2.6 Vector Cross Products 7
2.6.1 Rules of Cross Products 7
2.6.2 Example - Cross Product 7
3 Lines and Planes 8
3.1 Lines 8
3.1.1 Example - Building a Line in \mathbb{R}^{3} 8
3.1.2 Example - Building a Line in \mathbb{R}^{3} 8
3.1.3 Example - Distance from a Point to a Line 9
3.2 Planes 9
3.2.1 Example - Find a Point on the Plane 9
3.2.2 Example - Building a Plane in \mathbb{R}^{3} 9
4 Assorted Quadric Surfaces 10
5 Vector Functions 11
5.0.1 Example - Lines 11
5.1 Intersections of Surfaces 11
6 Calculus of Vector Functions 11
7 Tangent Vectors 11
8 Arc Length 11
9 The TNB Frame 12
10 Partial Derivatives 13
10.1 Example - $f(x, y)=x^{2}+3 x y+y-1$ 13
11 Tangent Planes 14
12 Linear Approximation 14
12.1 Example - Find the approximate value of $f(x, y)=2 x^{2}+y^{2}$ at the point (1.1, 1.1). 14
13 Differential 14
13.1 Relative Error 15
14 Chain Rule 15
15 Directional Derivative 15
16 Level Curves 15
17 Extrema 15
18 Lagrangian Multipliers 16
18.1 Example - Find the points on $x^{2}-z^{2}-1=0$ that are closest to the origin. 17
19 Double Integrals 17
19.1 Example - Switch the order of integration for the given integrals 18
20 Double Integrals in Polar Coordinates 18
20.1 Example - Find the area of the lemniscate $r^{2}=4 \cos (2 \theta)$. 18
21 Triple Integrals 19
21.1 Example - Find the Volume in Six Ways 19
22 Cylindrical and Spherical Coordinates 19
22.1 Conversion from Cartesion to Cylindrical 19
22.2 Conversion from Cartesion to Sperical Coordinates 19
22.3 Example - Describe the region between $x^{2}+y^{2}+z^{2}=4$ and $z=\sqrt{x^{2}+y^{2}}$. 20
22.4 Jacobians for Cartesion, Cylindrical, and Spherical Coordinates 21
23 Change of Variables 21
23.1 Formal Definition of Jacobian 21
23.2 Example for Polar Coordinates - What's the Jacobian if $x=$
$r \cos (\theta)$ and $y=r \sin (\theta)$? 21
23.3 3 Dimensions 22
24 Application of Multiple Integrals 22
25 Vector Fields 22
26 Line Integrals 22
26.1 Example - Find $\int f(x, y, z) d s$ with $f(x, y, z)=x-3 y^{2}+z$ and
the path defined as the line between points $(0,0,0)$ and $(1,1,1)$.23
26.2 Flow 23
26.3 Flux 24
26.4 Path Dependence 24
26.5 Determining a Gradient 25
26.5.1 Example - Determine ϕ with given F 25
27 Green's Theorem 25
27.1 Flow 25
27.2 Flux 26
28 Curl and Divergence 26
29 Three Dimensional Flux and Flow 26
30 Laplacian 27
31 Surface Area 27
31.1 Example - Surface Area of a Sphere 28
32 Surface Flux 28
33 Stokes' Theorem 28
33.1 Example 29
34 Gauss' Law of the Divergence Theorem 29

List of Figures

Calculus III Figures 4
1 Vector Parallelogram 5
$2 \quad \vec{u}=\vec{a}$ and $\vec{v}=b$ 6
3 Table of Quadric Surfaces 10
4 The TNB Frame 12
5 Cross Sections of a Partial Derivative 13
6 Tangent Plane with Associated Normal 14
$7 \quad$ A Surface and its Associated Level Curves 16
8 Gradient of a Level Curve 17
9 The Given Bounds 18
10 The $r z$ plane 20
11 The $\rho \phi$ plane 20
12 The example in various coordinate systems 20
133 Dimensional Vector Field 23
14 Line Integral Animation 23

In this course we will primarily interact with three dimensional space, therefore it is critical to thoroughly understand three dimensions. After three dimensional space we will move on to calculus in three dimensions and associated functions.

1 Three Dimensional Space

We call 2-dimensional space \mathbb{R}^{2}, therefore 3-dimensional space is represented by \mathbb{R}^{3}.

1.1 Circles and Spheres

In \mathbb{R}^{2} we use the formula $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ for circles. In \mathbb{R}^{3} we add the z factor to get

$$
\begin{equation*}
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2} \tag{1}
\end{equation*}
$$

1.2 Distance Formula

1 Distance between two points can be defined as

$$
\begin{equation*}
d\left((x, y, z),\left(x_{0}, y_{0}, z_{0}\right)\right)=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}} \tag{2}
\end{equation*}
$$

2 Vectors

A vector possesses both magnitude as well as direction. However the magnitude and direction are the only important parts of a vectors. In other words, the position of the vector is arbitrary, moving the vector around doesn't change the vector itself.

2.1 Scalar Multiples of Vectors

These multiples extend the vectors as well as possible switch the direction.

$$
c \cdot \vec{v}=\left\{\begin{array}{l}
c>0, \text { Extends in the same direction } \tag{3}\\
c<0, \text { Flips } 180 \text { and extends }
\end{array}\right.
$$

2.2 Addition and Subtraction of Vectors

Two methods can be used, tip to tail or parallelogram (see picture for graphical representation). Algebraically this operation can be completed by combining the components of the vectors:
$\overrightarrow{v_{1}}+\overrightarrow{v_{2}}=\left(x_{1}+x_{2}\right) \hat{\imath}+\left(y_{1}+y_{2}\right) \hat{\jmath}+\left(z_{1}+z_{2}\right) \hat{k}$

Figure 1: Vector Parallelogram

2.3 Vector Properties

2.3.1 Magnitude

The magnitudes of vectors an be found using: $|\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}}$
2.3.2 Scalar Multiplication

```
let \(c \neq 0\) and \(\vec{v}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}\)
\(c \vec{v}=(c x) \hat{\imath}+(c y) \hat{\jmath}+(c z) \hat{k}\)
\(|c \vec{v}|=|c||\vec{v}|\)
```


2.4 Inner Product (Dot Product)

This is the first method of vector multiplication.
If $\vec{A} \cdot \vec{B}=0$, then the two vectors are orthogonal.
Formula $=\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos (\theta)$
You can also use the law of cosines: $\vec{A} \cdot \vec{B}=\frac{1}{2}\left(|\vec{A}|^{2}+|\vec{B}|^{2}-|\vec{B}-\vec{A}|^{2}\right)$
Or $\vec{A} \cdot \vec{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3}$
2.4.1 Rules of Dot Products
$\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
$|\vec{A}|^{2}=\vec{A} \cdot \vec{A}$
$c(\vec{A} \cdot \vec{B})=(c \vec{A}) \cdot \vec{B}=\vec{A} \cdot(c \vec{B})$
$\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
2.4.2 Example - Dot Product

$$
\begin{array}{l|l}
\vec{A}=\langle 1,0,2\rangle & \text { Given } \\
\vec{B}=\langle 2,0,1\rangle & \text { Given } \\
\vec{A} \cdot \vec{B}=(1 \cdot 2)+(0 \cdot 0)+(2 \cdot 1)=4 & \vec{A} \cdot \vec{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3} \\
|\vec{A}|=\sqrt{2^{2}+0^{2}+1^{2}}=\sqrt{5} & |\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}} \\
|\vec{B}|={\sqrt{1^{2}+0^{2}+2^{2}}=\sqrt{5}}_{4=\sqrt{5}^{2} \cos (\theta)} \quad|\vec{v}|=\sqrt{x^{2}+y^{2}+z^{2}} \\
\cos (\theta)=\frac{4}{5} & \vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos (\theta) \\
\theta=\arccos \left(\frac{4}{5}\right) & \text { Solve for } \theta \\
\hline
\end{array}
$$

2.5 Projections

Formula for projections: $\operatorname{Proj}_{\vec{A}} \vec{B}=|\vec{B}| \cos (\theta) \frac{\vec{A}}{|\vec{A}|}$

Figure 2: $\vec{u}=\vec{a}$ and $\vec{v}=\vec{b}$
2.5.1 Example - Projection

$$
\begin{array}{r}
\text { Find } \operatorname{Proj}_{\vec{A}} \vec{B} \\
\vec{B}=\langle 6,3,2\rangle \\
\vec{A}=\langle 1,-2,-2\rangle \\
\frac{\vec{A} \cdot \vec{B}}{|\vec{A}|^{2}} \\
\vec{A} \cdot \vec{B}=-4 \\
|\vec{A}|^{2}=1^{2}+(-2)^{2}+(-2)^{2}=9 \\
\operatorname{Proj}_{\vec{A}} \vec{B}=\frac{-4}{9} \cdot\langle 1,-2,-2\rangle
\end{array}
$$

2.6 Vector Cross Products

This is the second method of vector multiplication.

$$
\begin{array}{r}
|\vec{A} \times \vec{B}=|\vec{A}|| \vec{B} \mid \sin (\theta) \\
\vec{A} \times \vec{B}=\left\langle\left(A_{2} B_{3}-A_{3} B_{2}\right),-\left(A_{1} B_{3}-A_{3} B_{1}\right),\left(A_{1} B_{2}-A_{2} B_{1}\right)\right\rangle \\
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right|=\left|\begin{array}{ll}
A_{2} & A_{3} \\
B_{2} & B_{3}
\end{array}\right| \hat{\imath}-\left|\begin{array}{cc}
A_{1} & A_{3} \\
B_{1} & B_{3}
\end{array}\right| \hat{\jmath}+\left|\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right| \hat{k} \tag{4}
\end{array}
$$

2.6.1 Rules of Cross Products
$\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C}$
$|\vec{A} \times \vec{B}|=$ Area of parallelogram
Volume of a parallelpipen:

$$
|\vec{A} \cdot(\vec{B} \times \vec{C})|=\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \tag{5}\\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|
$$

2.6.2 Example - Cross Product

$$
\begin{array}{r}
\vec{A}=\langle 2,1,1\rangle ; \vec{B}=\langle-4,3,1\rangle \\
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 1 & 1 \\
-4 & 3 & 1
\end{array}\right| \\
(1-3) \hat{\imath}-(2+4) \hat{\jmath}+(6+4) \hat{k} \\
-2 \hat{\imath}-6 \hat{\jmath}+10 \hat{k}
\end{array}
$$

3 Lines and Planes

We can find the formula for a line in three dimensional space.

3.1 Lines

Building a line in \mathbb{R}^{3} :

1. Find a point $\left(x_{0}, y_{0}, z_{0}\right)$
2. Find a vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$
3. Vector between $(x(t), y(t), z(t))$ and $\left(x_{0}, y_{0}, z_{0}\right)$ is $\left\langle x(t)-x_{0}, y(t)-y_{0}, z(t)-\right.$ $\left.z_{0}\right\rangle=t\left\langle v_{1}, v_{2}, v_{3}\right\rangle$
4.

$$
\text { Equation of a Line: }\left\{\begin{array}{l}
x(t)=x_{0}+t v_{1} \tag{6}\\
y(t)=y_{0}+t v_{2} \\
z(t)=z_{0}+t v_{3}
\end{array}\right.
$$

3.1.1 Example - Building a Line in \mathbb{R}^{3}

Given point $P_{0}(-2,0,4)$ and vector $\vec{v}=\langle 2,4,-2\rangle$

$$
\left\{\begin{array}{l}
x(t)=-2+2 t \\
y(t)=0+4 t \\
z(t)=4-2 t
\end{array}\right.
$$

3.1.2 Example - Building a Line in \mathbb{R}^{3}

Find an equation for the line between $P(-3,2,-3)$ and the point $Q(1,-1,4)$

$$
\begin{gathered}
\overrightarrow{P Q}=\langle 4,-3,7\rangle \\
\left\{\begin{array}{l}
x(t)=-3+4 t \\
y(t)=2-3 t \\
z(t)=-3-7 t
\end{array}\right.
\end{gathered}
$$

3.1.3 Example - Distance from a Point to a Line

Distance from a point s to a line l

$$
\begin{array}{r}
d=|\overrightarrow{P S}| \sin (\theta) \\
|\overrightarrow{P S} \times \vec{v}|=|\overrightarrow{P S}||\vec{v}| \sin (\theta) \\
|\overrightarrow{P S}| \sin (\theta)=\frac{|\overrightarrow{S P} \times \vec{v}|}{|\vec{v}|} \\
\text { Distance from } s \text { to } l \equiv d=\frac{|\overrightarrow{S P} \times \vec{v}|}{|\vec{v}|}
\end{array}
$$

3.2 Planes

We can also find the formula for a plane in three dimensional space.
Equation for a plane

1. Point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the plane
2. Need to find the normal vector $\vec{n}=\langle A, B, C\rangle$ where $\vec{n} \perp \overrightarrow{P_{0} P}$

Formula for a plane: $\vec{r}(t)=P_{0}+v t \equiv \vec{r}(t)=\left(x_{0}, y_{0}, z_{0}\right)+\langle A, B, C\rangle t$
3.2.1 Example - Find a Point on the Plane

Given $2 x+3 y+9 z=\pi$ and $\vec{n}=\langle 2,3,9\rangle$, find a point on the plane.

$$
\begin{array}{r}
\text { let } x=y=0 \\
\therefore z=\frac{\pi}{9} \\
P_{0}=\left(0,0, \frac{\pi}{9}\right)
\end{array}
$$

3.2.2 Example - Building a Plane in \mathbb{R}^{3}

Find the equation for the place through points $P=(0,0,1), Q=(2,0,0), R=$ $(0,3,0)$

$$
\begin{array}{r}
\overrightarrow{P Q}=\langle 2,0,-1\rangle \\
\overrightarrow{P R}=\langle 0,3,-1\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k} \\
3 x+2 y+6 z=6
\end{array}
$$

4 Assorted Quadric Surfaces

There are several shapes that are necessary for much of this course. Memorize these...

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ All traces are ellipses. If $a=b=c$, the ellipsoid is a sphere.	Cone	$\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellips Vertical traces in the plane $x=k$ and $y=k$ are hyperbolas if $k \neq 0$ but ars pairs of lines if $k=0$.
Elliptic Paraboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ Horizontal traces are ellips Vertical traces are hyperbo The axis of symmetry corresponds to the variable whose coefficient is negatif
Hyperbolic Paraboloid	$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c<0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ Horizontal traces in $z=k$ ellipses if $k>c$ or $k<-c$ Vertical traces are hyperbol The two minus signs indice two sheets.

Figure 3: Table of Quadric Surfaces

5 Vector Functions

Input of a single value $(t, t \in \mathbb{R})$ like a parametric function.
$\vec{r}(t)=$ vector $\in\left[\mathbb{R}^{2}, \mathbb{R}^{3}\right]$
$\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}+z(t) \hat{k}$
$\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$
5.0.1 Example - Lines
$\vec{r}(t)=P_{0}+v t$
$\vec{r}(t)=\left\langle x_{0}+a t, y_{0}+b t, z_{0}+c t\right\rangle$

5.1 Intersections of Surfaces

Given $z=y^{2}+1$ and $x^{2}+\frac{y^{2}}{4}=1$
$\therefore x(t)=\cos (t)$
$y(t)=2 \sin (t)$
$z(t)=4 \sin ^{2}(t)+1$
$\left\langle\cos (t), 2 \sin (t), 4 \sin ^{2}(t)+1\right\rangle$

6 Calculus of Vector Functions

1. Limits - These can be taken with respect to each component, one at a time.
2. Derivatives - These can be taken with respect to each component, one at a time.
3. Integrals

7 Tangent Vectors

Definition: Unit Tangent vector $\hat{T}(t)=\frac{\vec{r}(t)}{\left|\overrightarrow{r_{l}}(t)\right|}$
$\vec{r} \prime(t)$ points in the direction of trajectory.

8 Arc Length

Arc length of any given path $\vec{r}(t)$ can be calculated.

$$
\begin{equation*}
\text { Arc length } s \text { between } r\left(t_{0}\right) \text { and } r\left(t_{f}\right) \equiv \int_{t_{0}}^{t_{f}}|\vec{v}(t)| d t=\int_{t_{0}}^{t_{f}}|\vec{r}(t)| d t \tag{7}
\end{equation*}
$$

Arc length is important because it allows us to calculate vectors around a given line in \mathbb{R}^{3}.

Another important concept is the Arc Length Parameter $s(t)$.

$$
\begin{equation*}
s(t)=\int_{t_{0}}^{t}|\vec{v}(t)| d t \tag{8}
\end{equation*}
$$

9 The TNB Frame

Figure 4: The TNB Frame
The TNB frame is at its core a method for describing a line in 3 dimensional space. At any given point the line in question will have a Tangent vector, a Normal vector, and a Binormal vector. Note, all three of these vectors are orthagonal to each other.

The Tangent Vector describes the direction of motion in space as well as the velocity of a particle at that point.

$$
\begin{equation*}
\hat{T}=\frac{\frac{d \vec{r}}{d t}}{\left|\frac{d \vec{r}}{d t}\right|}=\frac{\vec{r} \prime(t)}{|\vec{r} \prime(t)|} \tag{9}
\end{equation*}
$$

The Normal Vector describes the tendency for the line to curve in space as well as centripetal acceleration.

$$
\begin{equation*}
\hat{N}=\frac{\frac{d \hat{T}}{d s}}{\left|\frac{d \hat{T}}{d s}\right|} \tag{10}
\end{equation*}
$$

The Binormal Vector describes the tendency for the line to leave the plane.

$$
\begin{equation*}
\hat{B}=\hat{T} \times \hat{N} \tag{11}
\end{equation*}
$$

These three components also give us curvature

$$
\begin{equation*}
\kappa=\left|\frac{d \hat{T}}{d s}\right|=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}} \tag{12}
\end{equation*}
$$

And torsion

$$
\tau=\frac{\left|\begin{array}{ccc}
\dot{x} & \dot{y} & \dot{z} \tag{13}\\
\ddot{x} & \ddot{y} & \ddot{\dddot{x}} \\
\ddot{x} & \ddot{y} & \ddot{z}
\end{array}\right|}{|\vec{v} \times \vec{a}|^{2}}
$$

10 Partial Derivatives

In order to find the derivative at any given point on a 3 dimensional surface, you need to essentially "fix" one variable and treat it as a constant. This allows you to look at a line as opposed to a surface.

Figure 5: Cross Sections of a Partial Derivative
Some notation:

$$
\frac{\partial f}{\partial x}=\partial_{x} f \text { and } \frac{\partial f}{\partial y}=\partial_{y} f
$$

Double and triple partials are also allowed, and for most instances

$$
\partial_{x y}=\partial_{y x}
$$

10.1 Example - $f(x, y)=x^{2}+3 x y+y-1$

$$
\left\{\begin{array}{l}
\partial_{x}=2 x+3 y \rightarrow(y \text { acts as a constant }) \\
\partial_{y}=3 x+1 \rightarrow(x \text { acts as a constant })
\end{array}\right.
$$

Figure 6: Tangent Plane with Associated Normal

11 Tangent Planes

At any point on a given surface there exists a plane tangent to the point. The equation for this tangent plane is as follows

$$
\begin{array}{r}
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0 \\
\text { where } f_{x}=\frac{\partial f}{\partial x} \text { and } f_{y}=\frac{\partial f}{\partial y} \tag{14}
\end{array}
$$

The normal vector to this tangent plane is

$$
\begin{equation*}
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \tag{15}
\end{equation*}
$$

12 Linear Approximation

This is to approximate the value of the surface function at any given point by using a plane tangent to the surface at that point. Therefore this formula is a variation on the tangent plane formula.

$$
\begin{equation*}
\mathcal{L}_{f\left(x_{0}, y_{0}\right)}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \tag{16}
\end{equation*}
$$

12.1 Example - Find the approximate value of $f(x, y)=2 x^{2}+y^{2}$ at the point $(1.1,1.1)$.

$$
\begin{aligned}
\mathcal{L}_{f\left(x_{0}, y_{0}\right)}(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
\mathcal{L}_{f(1.1,1.1)}(x, y) & =3+4(1.1-1)+2(1.1-1) \approx 3.6
\end{aligned}
$$

13 Differential

$$
\begin{array}{r}
d x=\Delta x=x-x_{0} \\
d y=\Delta y=y-y_{0} \tag{17}\\
d z=\Delta z=z-z_{0}
\end{array}
$$

13.1 Relative Error

$$
\text { Error }\left\{\begin{array}{l}
\frac{d x}{x} \tag{18}\\
\frac{d y}{y} \\
\frac{d z}{z}
\end{array}\right.
$$

14 Chain Rule

Let $z=f(x, y)$ where x and y are functions in terms of $t \rightarrow x(t), y(t)$. Therefore we can define z in terms of $t \rightarrow z(t)=f(x(t), y(t))$. Given this, we can find the derivative of z in terms of t.

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \tag{19}
\end{equation*}
$$

If x and y are in terms of t and s, then we can do two different chain rules.

$$
\begin{align*}
& \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& \frac{d z}{d s}=\frac{\partial z}{\partial x} \frac{d x}{d s}+\frac{\partial z}{\partial y} \frac{d y}{d s} \tag{20}
\end{align*}
$$

15 Directional Derivative

If we wish to know how f changes in terms of x or y, we can find the derivative. However if we instead wish to know how f changes in a given direction $\vec{u}=$ $\left\langle u_{1}, u_{2}\right\rangle$ we use

$$
\begin{equation*}
D_{\vec{u}} f=\left\langle\frac{d f}{d x}, \frac{d f}{d y}\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle=\nabla f \cdot \vec{u} \tag{21}
\end{equation*}
$$

Where we define the gradient of a function f

$$
\begin{equation*}
\nabla f=\left\langle f_{x}, f_{y}\right\rangle \tag{22}
\end{equation*}
$$

16 Level Curves

Level curves are the two dimensional projection of a surface on the $x y$ plane. Think of a contour map, the closer together the curves are, the steeper the slope of the surface is. With any given level curve, the gradient of the surface will always be orthogonal to the level curves.

17 Extrema

In order to find local minima and maxima, we need to find points at which $f_{x}(x, y)=0, f_{y}(x, y)=0$, and $\nabla f=0$. The (x, y) coordinates that satisfy these equations are called critical points. In other words, solve the gradient for

Figure 7: A Surface and its Associated Level Curves
zero. Once critical points have been identified, there are a couple tests to do to identify the types for each critical point.

First compute the Hessian

$$
\operatorname{det}\left(\left|\begin{array}{ll}
f_{x x} & f_{x y} \tag{23}\\
f_{x y} & f_{y y}
\end{array}\right|\right)=f_{x x} \cdot f_{y y}-f_{x y}^{2}
$$

Then there are three different situations

$$
\left\{\begin{array}{l}
\text { Hessian }>0 \rightarrow\left\{\begin{array}{l}
{\left[f_{x x} \text { or } f_{y y}\right]>0 \rightarrow \text { Minimum }} \\
{\left[f_{x x} \text { or } f_{y y}\right]<0 \rightarrow \text { Maximum }}
\end{array}\right. \tag{24}\\
\text { Hessian }<0 \rightarrow \text { Saddle } \\
\text { Hessian }=0 \rightarrow \text { No Conclusions }
\end{array}\right.
$$

18 Lagrangian Multipliers

Essentially constrained optimization. Given a constraint $g(x, y)$, we can find maximum and minimum values of a function $f(x, y)$ on the constraint.

To find the maximums and minimums of f on g, compute the langrangian multiplier λ using $\nabla f=\lambda \nabla g$ and $g(x, y)=c$.

Figure 8: Gradient of a Level Curve
18.1 Example - Find the points on $x^{2}-z^{2}-1=0$ that are closest to the origin.

$$
\begin{array}{r}
g=x^{2}-z^{2}-1=0 \\
f=x^{2}+y^{2}+z^{2} \\
\nabla g=\langle 2 x, 0,-2 z\rangle \\
\nabla f=\langle 2 x, 2 y, 2 z\rangle \\
\langle 2 x, 2 y, 2 z\rangle=\lambda\langle 2 x, 0,-2 z\rangle \tag{25}
\end{array}
$$

Solve the system of equations

$$
x \pm 1, y=0, z=0, \lambda=1
$$

Therefore our critical points are at $(1,0,0)$ and $(-1,0,0)$

19 Double Integrals

We can find area and volume of given shapes using double integrals. In order to find the integral, you first take it with respect to one axis, and then the other. The order of integration is irrelevant.

Fabini's Theorem: $\iint_{R} f(x, y) d A \rightarrow \int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \equiv \int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y$
The hardest part of multiple integration is determining the bounds of integration. The integral itself is usually not too tricky, however the bounds often pose
an issue.
19.1 Example - Switch the order of integration for the given integrals

$$
\begin{array}{r}
\text { Given } \int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) d x d y \\
\text { Bounds }\left\{\begin{array}{l}
\sqrt{y} \leq x \leq 1 \\
0 \leq y \leq x^{2}
\end{array}\right. \\
\int_{0}^{1} \int_{0}^{x^{2}} f(x, y) d y d x
\end{array}
$$

Figure 9: The Given Bounds

20 Double Integrals in Polar Coordinates

In Cartesian Coordinates you either use vertical or horizontal slices to determine the overall area. With Polar Coordinates you instead either use a sets of wedges or expanding washers.

$$
\iint_{R} f(x, y) d A=\iint_{R} f(r, \theta) d A=\iint_{R} f(r, \theta) r d r d \theta
$$

20.1 Example - Find the area of the lemniscate $r^{2}=4 \cos (2 \theta)$.

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \sqrt{\cos (2 \theta)}} r d r d \theta=1
$$

21 Triple Integrals

Triple integrals calculate the volume of a specified region. To determine bounds, approach from one direction and then integrate over the identified region.

21.1 Example - Find the Volume in Six Ways

Given: R is a tetrahedron with vertices at $[(0,0,0),(1,1,0),(0,1,0),(0,1,1)]$.
Normal of the plane defining the region $=\langle-1,1,-1\rangle \therefore z=y-x$

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{1} \int_{0}^{y-x} F(x, y, z) d z d y d x \\
& \int_{0}^{1} \int_{0}^{y} \int_{0}^{y-x} F(x, y, z) d z d x d y \\
& \int_{0}^{1} \int_{z}^{1} \int_{0}^{y-z} F(x, y, z) d x d y d z \\
& \int_{0}^{1} \int_{0}^{y} \int_{0}^{y-z} F(x, y, z) d x d z d y \\
& \int_{0}^{1} \int_{0}^{1-x} \int_{z+x}^{1} F(x, y, z) d y d z d x \\
& \int_{0}^{1} \int_{0}^{1-z} \int_{z+x}^{1} F(x, y, z) d y d x d z
\end{aligned}
$$

22 Cylindrical and Spherical Coordinates

Cartesion is all about grids, Cylindrical is stacked polar graphs, and Spherical is a series of layered spheres as the name implies. For cylindrical, it is essentially just polar with an extra dimension. Any point in the plane can be described as a point on the circle with radius r.
Note, radius can never be negative.

22.1 Conversion from Cartesion to Cylindrical

$x=r \cos (\theta)$
$y=r \sin (\theta)$

$$
z=z
$$

22.2 Conversion from Cartesion to Sperical Coordinates

$$
\begin{array}{r}
x=\rho \sin (\phi) \cos (\theta) \\
y=\rho \sin (\phi) \sin (\theta) \\
z=\rho \cos (\phi)
\end{array}
$$

Figure 10: The $r z$ plane

Figure 11: The $\rho \phi$ plane
22.3 Example - Describe the region between $x^{2}+y^{2}+z^{2}=4$ and $z=\sqrt{x^{2}+y^{2}}$.

$$
\begin{array}{r}
\text { Convert Coordinates } \\
x^{2}+y^{2}=4-z^{2} \\
\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)+\rho^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)=4-\rho^{2} \cos ^{2}(\phi) \\
\rho^{2} \sin ^{2}(\phi)=4-\rho^{2} \cos ^{2}(\phi) \leftrightarrows \\
\rho^{2}\left(\sin ^{2}(\phi)+\cos ^{2}(\phi)\right)=4 \\
\rho^{2}=4 \\
\rho=2
\end{array} \quad \begin{array}{r}
x^{2}+y^{2} \\
\hline
\end{array}
$$

Figure 12: The example in various coordinate systems

$$
\begin{gathered}
\text { Cylindrical Coordinate Region: }\left\{\begin{array}{l}
0 \leq r \leq \sqrt{2} \\
r \leq z \leq \sqrt{4-r^{2}}
\end{array}\right. \\
\text { Spherical Coordinate Region: }\left\{\begin{array}{l}
0 \leq \rho \leq 2 \\
0 \leq \phi \leq \frac{\pi}{4}
\end{array}\right.
\end{gathered}
$$

22.4 Jacobians for Cartesion, Cylindrical, and Spherical Coordinates

$$
\begin{align*}
\text { Cartesion: } d V & =d x d y d z \\
\text { Cylindrical: } d V & =r d r d z d \theta \tag{27}\\
\text { Spherical: } d V & =\rho^{2} \sin (\phi) d p d \phi d \theta
\end{align*}
$$

23 Change of Variables

Let's assume that we have some function $f(x, y)$, and both x and y can be defined as functions wih respect to u and v. In other words:

$$
\left\{\begin{array}{l}
x=x(u, v) \rightarrow \text { e.g. } x \equiv x(r, \theta)=r \cos (\theta) \\
y=y(u, v) \rightarrow \text { e.g. } y \equiv y(r, \theta)=r \sin (\theta)
\end{array}\right.
$$

We essentially wish to do this: $\iint f(x, y) d x d y \rightarrow \iint f(u, v) \frac{d x d y}{d u d v} d u d v$

$$
\text { We use } \frac{d x d y}{d u d v}=\frac{\partial(x, y)}{\partial(u, v)} \text { which we call the Jacobian } J(u, v)
$$

23.1 Formal Definition of Jacobian

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=|\operatorname{det}| \begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{28}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}| |=|\operatorname{det}| \begin{array}{cc}
X_{u} & X_{v} \\
Y_{u} & Y_{v}
\end{array}| |=\left|\frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u}\right|
$$

$\therefore d A=d x d y=J(u, v) d u d v$
23.2 Example for Polar Coordinates - What's the Jacobian if $x=$ $r \cos (\theta)$ and $y=r \sin (\theta)$?
$J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=|\operatorname{det}| \begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}| |=|\operatorname{det}| \begin{array}{ll}\cos (\theta) & -r \sin (\theta) \\ \sin (\theta) & -r \cos (\theta)\end{array}| |=\left|r \cos ^{2}(\theta)+r \sin ^{2}(\theta)\right|=r$ $\therefore d A=d x d y=r d r d \theta$

23.33 Dimensions

$$
J(u, v, w)=\frac{\partial(x, y, z)}{\partial(u, v, z)}=|\operatorname{det}| \begin{array}{ccc}
X_{u} & X_{v} & X_{w} \tag{29}\\
Y_{u} & Y_{v} & Y_{w} \\
Z_{u} & Z_{v} & Z_{w}
\end{array}| |
$$

24 Application of Multiple Integrals

We can use double and triple integrals to determine a number of different physical quantities.

To determine the mass of a plane with density δ

$$
\begin{equation*}
\text { Mass }=\iint_{R} \delta(x, y) d A \tag{30}
\end{equation*}
$$

To find the Moment of the region around the $[x, y]$ axis

$$
\begin{equation*}
\operatorname{Moment}_{[x, y]}=M_{[x, y]}=\iint_{R}[x, y] \delta(x, y) d A \tag{31}
\end{equation*}
$$

Therefore we can calculate the coordinates of the center of mass of the region

$$
\begin{equation*}
\left(\bar{x}=\frac{M_{x}}{m}=\frac{\iint_{R} x \delta(x, y) d A}{\iint_{R} \delta(x, y) d A}, \bar{y}=\frac{M_{y}}{m}=\frac{\iint_{R} y \delta(x, y) d A}{\iint_{R} \delta(x, y) d A}\right) \tag{32}
\end{equation*}
$$

25 Vector Fields

A vector field is a vector valued function. In other words, at any given point a vector value is given at that point.
There are several different types of vector fields, but all are forces. One such field is a gravitational force field, another is an electrical force field. There are many such force fields including ones that deal with fluid mechanics.

There are two types of viewing vector field, the Lagrangian System where you look at the position of a particle at any given moment, and the Eulerian System where you look at the velocity of the particle at any given moment.

26 Line Integrals

Thus we can get the concept of a line integral. As any mass travels along a parametrized path in a vector field, work is done on that mass by the forces. $w=\int_{c} \vec{F} \cdot \hat{T} d s=\int_{c} \vec{F} \cdot d r$

Figure 13: 3 Dimensional Vector Field

Line Integral Animation
Figure 14: Line Integral Animation
26.1 Example - Find $\int_{c} f(x, y, z) d s$ with $f(x, y, z)=x-3 y^{2}+z$ and the path defined as the line between points $(0,0,0)$ and $(1,1,1)$.

First parametrize the line $\rightarrow \vec{r}(t)=\langle t, t, t\rangle, 0 \leq t \leq 1$

$$
\begin{array}{r}
\int_{c} f(x, y, z) d s=\int_{t_{0}}^{t_{f}} f\left(x(t), y(t), z(t) \frac{d s}{d t} d t\right. \\
=\int_{t_{0}}^{t_{f}} f(x(t), y(t), z(t))|\vec{v}(t)| d t \\
\text { If } \vec{r}(t)=\langle t, t, t\rangle \text { Then } \vec{v}(t)=\langle 1,1,1\rangle \\
|\vec{v}|=\sqrt{3} \\
t_{0}=0 ; t_{f}=1 \\
\int_{0}^{1}\left(t-3 t^{2}+t\right) \sqrt{3} d t=\left.\sqrt{3}\left(t^{2}-t^{3}\right)\right|_{0} ^{1}=0
\end{array}
$$

26.2 Flow

Circulation, or flow, can be described as the rate at which fluid is moving around the curve. Let's assume we have a vector field \vec{u} and a curve defined by $\vec{r}(t)$.

$$
\begin{equation*}
\int_{c} \vec{u} \cdot \hat{T} d s=\int_{c} \vec{u} \cdot \frac{d \vec{r}}{d s}=\int_{c} \vec{u} \cdot d r \tag{33}
\end{equation*}
$$

If we let $\vec{u}=\langle M, N, P\rangle$ and $d \vec{r}=\langle d x, d y, d z\rangle$, then we can define flow as:

$$
\begin{equation*}
\text { Flow }=\int_{c}\langle M, N, P\rangle \cdot\langle d x, d y, d z\rangle=\int_{c} M d x+N d y+P d z \tag{34}
\end{equation*}
$$

26.3 Flux

Flux can be described as the rate at which fluid is transferred over the curve.

$$
\begin{equation*}
\int_{c} \vec{u} \cdot \hat{N} d s=\int_{c}(\vec{u} \times d r) \cdot \hat{k} \tag{35}
\end{equation*}
$$

Assuming the same conditions as above, we can then restate flux to be:

$$
\begin{equation*}
\text { Flux }=\int_{c} M d y-N d x=\int_{c} M d y-\int_{c} N d x \tag{36}
\end{equation*}
$$

26.4 Path Dependence

Suppose c is a curve. We know that $w o r k=\int_{c} \vec{F} \cdot d \vec{r}$. Suppose we set $\vec{F}=\nabla \phi$. This means that

$$
w=\int_{c} \nabla \phi \cdot d \vec{r}=\int_{t_{0}}^{t_{f}}\left(\nabla \phi \cdot \frac{d \vec{r}}{d t}\right) d t
$$

And by chain rule we can find

$$
\nabla \phi \frac{d \vec{r}}{d t}=\phi_{x} \frac{d x}{d t}+\phi_{y} \frac{d y}{d t}+\phi_{z} \frac{d z}{d t}=\frac{d \phi}{d t}
$$

Therefore, the total amount of work done on any object can be found using the following formula

$$
\phi(B)-\phi(A)
$$

This means that the total work done along any given path is just the difference in potential energy. Therefore the total work done along the path is independent of the path.

Note, this is only true for conservative fields. In order to determine whether or not a field is conservative, take the curl and dot it with \hat{k} :

$$
\operatorname{det}\left(\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \tag{37}\\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right|\right) \cdot \hat{k}=\left\langle P_{y}-N_{z}, P_{x}-M_{z}, N_{x}-M_{y}\right\rangle \cdot \hat{k}=M_{y}-N_{x}
$$

Once you have this, solve it. If it equals zero, you have a conservative field.

26.5 Determining a Gradient

Given $\vec{F}=\langle M, N, P\rangle$, how can we tell is \vec{F} is a gradient of a scalar potential? In other words, how do we tell if $\vec{F}=\nabla \phi$?

If $\vec{F}=\nabla \phi$, then $\langle M, N, P\rangle=\left\langle\phi_{x}, \phi_{y}, \phi_{z}\right\rangle$. Therefore, in order to determine whether or not it's a gradient, the following three cases must be true.

$$
\left\{\begin{array}{l}
M=\phi_{x} \rightarrow M_{y}=\phi_{x y} \rightarrow M_{y}=N_{x} \\
N=\phi_{y} \rightarrow N_{x}=\phi_{y x} \rightarrow M_{z}=P_{x} \\
P=\phi_{z} \rightarrow P_{y}=\phi_{z y} \rightarrow N_{z}=P_{y}
\end{array}\right.
$$

26.5.1 Example - Determine ϕ with given \vec{F}

Given: $\vec{F}=\left\langle e^{x} \cos (y)+y z, x z-e^{x} \sin (y), x y+z\right\rangle$

$$
\left.\begin{array}{rl}
M & =e^{x} \cos (y)+y z \\
N & =x z-e^{x} \sin (y) \\
P & =x y+z
\end{array}\right] \begin{array}{ll}
& \checkmark\left\{\begin{array}{l}
M_{y}=z-e^{x} \sin (y) \\
N_{x}=z-e^{x} \sin (y)
\end{array}\right. \\
& \checkmark\left\{\begin{array}{l}
M_{z}=y \\
P_{x}=y
\end{array}\right. \\
\vec{F}=\nabla \phi \rightarrow \begin{cases}\phi_{x}=M \rightarrow \phi=e^{x} \cos (y)+x y z \\
\phi_{y}=N \rightarrow \phi=e^{x} \cos (y)+x y z \\
\phi_{z}=P \rightarrow \phi=x y z+\frac{z^{2}}{2}\end{cases} & \checkmark\left\{\begin{array}{l}
N_{z}=x \\
P_{y}=x
\end{array}\right.
\end{array}
$$

Combine unique terms (linear combination)

$$
\therefore \phi=e^{x} \cos (y)+x y z+\frac{z^{2}}{2}
$$

27 Green's Theorem

Green's Theorem lets us restate our equations for Flow and Flux using double integrals.

27.1 Flow

$$
\begin{equation*}
\int_{c} \vec{u} \cdot \hat{T} d s=\int_{c} \vec{u} \cdot d r \equiv \iint_{c} \operatorname{curl}(\vec{u}) d A=\iint(\nabla \times \vec{u}) \cdot \hat{k} d A \tag{38}
\end{equation*}
$$

27.2 Flux

$$
\begin{equation*}
\int_{c} \vec{u} \cdot \hat{N} d s=\int_{c}(\vec{u} \times d r) \cdot \hat{k} d x=\iint_{c} \operatorname{div}(\vec{u}) d A=\iint(\nabla \cdot \vec{u}) d A \tag{39}
\end{equation*}
$$

28 Curl and Divergence

Vector fields generally have a natural tendency to either start spreading or rotating.

Curl is the same as vorticity, which is the measure of shear, or the tendency for a given region to deform. This deformation occurs in the form of twisting and shifting.

To find Total Circulation you integrate against the circulation density.

$$
\begin{equation*}
\vec{F}=\langle M(x, y), N(x, y)\rangle \tag{40}
\end{equation*}
$$

Total Circulation/Flow: $\oint_{R} \vec{F} \cdot \hat{T} d s=\oint_{R} M d x+N d y=\iint_{R} \operatorname{curl}(\vec{F}) d A$

$$
\begin{equation*}
\text { Where } \operatorname{curl}(\vec{F})=N_{x}-M_{y} \tag{41}
\end{equation*}
$$

Divergence is also the tendency for a region to deform, however the deformation occurs in the form of expansion.

To find the Total Flux you integrate against the flux density.

$$
\begin{array}{r}
\text { Total Flux: } \oint_{R} \vec{F} \cdot \hat{N} d s=\oint_{R} M d y-N d x=\iint_{R} \operatorname{div}(\vec{F}) d A \tag{42}\\
\text { Where } \operatorname{div}(\vec{F})=M_{x}+N_{y}
\end{array}
$$

29 Three Dimensional Flux and Flow

Let's assume that we have a generic vector field defined by $\vec{F}=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$. Given that, we can then assume that

$$
\begin{equation*}
\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=M_{x}+N_{y}+P_{z} \tag{43}
\end{equation*}
$$

which is a measurement of flux density (the tendancy for a field to expand).

Based on the above we can also determine curl to be

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \tag{44}\\
\partial_{x} & \partial_{y} & \partial_{z} \\
M & N & P
\end{array}\right|
$$

which is a measurement of circulation density (the tendancy for a field to twist).
Using this generalization, we can determine that if the P values are set to 0 , we will get the 2D formula for curl. Otherwise we get the 3D generalization.

30 Laplacian

To start, let's prove that $\operatorname{curl}(\nabla \phi)=0$, in other words $\nabla \times \nabla \phi=0$. To do this, we'll use the standard definition of curl, and find that the terms cancel.

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\phi \partial_{x} & \phi \partial_{y} & \phi \partial_{z}
\end{array}\right|
$$

Therefore if $\vec{F}=\nabla \phi$, then $\nabla \times \nabla \phi=0$. Meaning that $\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\nabla$. $\nabla \phi=\nabla\left\langle\phi_{x}, \phi_{y}, \phi_{z}\right\rangle$, and $\nabla^{2}=\Delta \phi=\left\langle\phi_{x x}, \phi_{y y}, \phi_{z z}\right\rangle$. Therefore the Laplacian can be defined as:

$$
\begin{equation*}
\text { Laplacian }=\nabla^{2}=\Delta \phi=\left\langle\phi_{x x}, \phi_{y y}, \phi_{z z}\right\rangle \equiv \Delta \phi=\phi_{x x}+\phi_{y y}+\phi_{z z} \tag{45}
\end{equation*}
$$

31 Surface Area

Let's say we have a given surface s, to determine the overall surface area we have to first split it up into different parts in order to identify shadow regions for each part.

To see how this is done, let's look at a tiny piece of area on the surface $d \sigma$ which can be projected downwards into the shadow region as $d A$ which is in x and y. On a small enough scale we can also approximate $d \sigma$ to be a planar surface.

Knowing this, we can determine the total surface area to be:

$$
S A=\iint_{s} d \sigma=\iint_{\text {shadow }} \frac{|\nabla F|}{|\nabla F \cdot \hat{p}|} d A
$$

31.1 Example - Surface Area of a Sphere

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}=R^{2}
$$

Make a cut along the equator of the sphere, focus on the top, and then double

$$
\begin{array}{r}
\hat{p}=\hat{k} \text { Since the shadow region is in the } x y \text { plane } \\
\nabla F=\langle 2 x, 2 y, 2 z\rangle
\end{array} \begin{array}{r}
|\nabla F|=2 \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow R \\
|\nabla F \cdot \hat{p}|=2 z
\end{array} \quad \begin{array}{r}
2 z \frac{2 \sqrt{x^{2}+y^{2}+z^{2}}}{2 z} d A \rightarrow R \iint \frac{d A}{\sqrt{R^{2}-x^{2}-y^{2}}} \\
\int_{0}^{2 \pi} \int_{0}^{R} \frac{r d r d \theta}{\sqrt{R^{2}-r^{2}}} \rightarrow 4 \pi R^{2}
\end{array}
$$

32 Surface Flux

To find Total Flux, we have to calculate $\iint_{\text {surface }} \vec{F} \cdot \hat{N} d \sigma$. We can rearrange this formula to find

$$
\iint_{\text {surface }} \vec{F} \cdot \hat{N} d \sigma=\iint_{s} \frac{u \cdot \nabla F}{|\nabla F \cdot \hat{p}|} d A
$$

Where $\hat{N} d \sigma=\frac{\nabla F}{|\nabla F \cdot \hat{p}|} d A$ and \vec{u} is the line in question.

33 Stokes' Theorem

If you remember Green's theorem, we found a two dimensional formula for the line integral.

$$
(2 D) \rightarrow \oint_{c} \vec{u} \cdot d r=\iint_{D} \operatorname{curl}(\vec{u}) d A ; \operatorname{curl}(\vec{u})=\nabla \times \vec{u}
$$

We can generalize this formula for three dimensions.

$$
(3 D) \rightarrow \oint_{c} \vec{u} \cdot d r=\iint_{S}(\nabla \times \vec{u}) \cdot \hat{N} d \sigma
$$

Stokes Theorem says that if we let c be some closed contour and we let S be any surface with boundary c we can find the line integral by finding the total flux over the surface. Note, the normal of the surface should be aligned with the curve according the the right-hand rule. Therefore if the curve is rotating in positive radians, the normal points up the z axis, and vice-versa. Also, the surface is arbitrary. ANY surface will work.

Another note, if we have a closed region s and we wish to find the line integral around the surface, it will always equal zero. Not only do the normals cancel each other out, but also the curves rotate opposite directions.

33.1 Example

Given the surfaces $z^{2}=x^{2}+y^{2}$ and $z=x^{2}+y^{2}$, find the line integral of the line formed by the intersection of the two surfaces.

$$
\begin{array}{r}
\vec{u}=\langle-y, x, y z\rangle \\
\nabla \times \vec{u}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
-y & x & y z
\end{array}\right|=\langle z, 0,2\rangle \\
F(x, y, z)=z=1 \\
d \sigma=d A \\
\iint_{S} 2 d A=2 \pi
\end{array}
$$

34 Gauss' Law of the Divergence Theorem

Virtually the same as Greens' Theorem, just extended into three dimensions.

$$
\begin{aligned}
\text { Plane } & \rightarrow \oint_{C} \vec{F} \cdot \hat{N} d s=\iint_{R} \operatorname{div}(\vec{F}) d A \\
\text { Surface } & \rightarrow \iint_{S} \vec{u} \cdot \vec{N} d \sigma=\iiint_{V} \operatorname{div}(\vec{u}) d V
\end{aligned}
$$

Where $\vec{u}=\langle M, N, P\rangle$ and $\operatorname{div}(\vec{u})=\nabla \cdot \vec{u}=M_{x}+N_{y}+P_{z}$. The surface must also be closed.

