

$\int_{2^{2 m}}^{\text {3.3 }}$ Example - Radius of Convergence

$\begin{aligned} & \qquad \left\lvert\, \begin{array}{c} z^{z_{n}}=\left(z^{2}\right)^{n} \end{array}\right. \\ & \begin{array}{l} \text { Therefore it converges for }\|z\|<1 \text { and the radius of convergence is } \\ R=1 . \\ n_{n+1}^{n} z^{n} \end{array}\left\|=\left\|\frac{z^{2 n}}{z^{2(n+1)}}\right\|=\frac{1}{\|z\|^{2}}\right. \\ & \qquad\left\|\frac{a_{n}}{a_{n+1}}\right\|=\left\|\frac{n^{n} z^{n}}{(n+1)^{n+11} z^{n+1}}\right\|=\frac{1}{(n+1)(1+1 / n)^{n}\|z\|}=0 \end{aligned}$	Theorem 19 (Taylor Series). Let $f(z)$ be analytic for $\|z\| \leq R$. Then $\begin{aligned} & \qquad f(z)=\sum_{j=0}^{\infty} b_{j} z \\ & \text { where } \\ & \qquad b_{j}=\frac{f^{(j)}(0)}{j!} \\ & \text { converges uniformly in }\|z\| \leq R_{1}<R . \end{aligned}$
$\begin{array}{cc}\text { Thereforer } R=0 . \\ \text { 3.4 } & \text { Taylor Series }\end{array}$	The largest number R for which the power series converges inside the disk $\|z\|<R$ is called the radins of convergene$\|z\|<R$ is called the radius of convergence
s about the point $z=z_{0}$ is define $f(z)=\sum_{t=0}^{\infty} b$	Theorem 20. Let $f(z)$ be analytic for $\|z\| \leq R$. Then the series obtained by differentiating the Taylor series termwise converges uniformly to $f^{\prime}(z)$ in $\|z\| \leq R_{1}<R$.
$\begin{aligned} & \qquad \qquad f\left(z+z_{0}\right)=\sum_{j=0}^{\infty} b_{j} z^{\prime} \\ & \text { With } b_{j}, z_{0} \text { are constants. WLOG }{ }^{7} \text { we can work with } \end{aligned}$	
0 case	Theorem 22 (Comparison Test). Let the series $\sum_{j=0}^{\infty} a_{j} z^{j}$ converge for $\|z\|<R .\|I f\| b_{j} \mid \leq$ for $\|z\|<R$.
Theorem 18. If the series \qquad	Theorem 23. Let each of two functions $f(z)$ and $g(z)$ be analytic in a common domain D. If $f(z)$ and $g(z)$ coincide in some subportion
TWitom LLes of Gemenaly	
$C_{n}= \begin{cases}-1 & n \leq-1 \\ \frac{1}{2 n} & n \geq 0\end{cases}$	1OVC call this an N th order pole if $N \geq 2$ and a simple pole if $N=1$. The an essential singular point. These have "full" Laurent series expansions.
$\begin{aligned} & \text { Expand the function } \\ & \qquad f(z)=\frac{z}{(z-1)(z+2 i)} \Rightarrow \frac{1 / 5-2 i / 5}{z-1}+\frac{4 / 5+2 i / 5}{z+2 i} \\ & \text { in a Laurent series in the following regions. } \\ & -\|z\|<1 \\ & \qquad f(z)=\frac{1 / 5-2 i / 5}{1}+\frac{4 / 5+2 i / 5}{2 i} \end{aligned}$	Theorem 29. If $f(z)$ has an essential singularity at $z=z_{0}$, then for any comp number $w, f(z)$ becomes arbitrarily close to w in a neighborhood of z_{0}. That is, given w, and any $\epsilon>0, \delta>0$, there is a z such that $\|f(z)-w\|<6$
$=\left(\frac{2 i-1}{5}\right) \sum_{n=0}^{\infty}\left(1-\left(\frac{i}{2}\right)^{n}\right) z^{n}$	An entir functio is one that is analytic everywhere on the complex phane.
$\begin{aligned} & -1<\| \|<2 \\ & \quad f(z)=\frac{1 / 5-2 / / 5}{z-1}+\frac{4 / 5+2 / 5}{z+2 i} \end{aligned}$	contour.
$=\left(\frac{1-2 i}{5}\right) \sum_{n=0}^{\infty} \frac{1}{n+1}+\left(\frac{1-2 i}{5}\right) \sum_{n=0}^{\infty}\left(\frac{i}{2}\right)^{n} z^{n}$	3.10 Example - Singularities
$-\|x\|>2$	Disususall singuluriteo of the following finctions.
	$\frac{\sin z}{2}$. Function $\sin z$ is entire, so
3.9 Singularities of Complex Functions	
An isolated singular point is a point where a given singlevalued function is not analytic, but analytic in the neighborhood surrounding the point.	$=\frac{1}{z^{2}-\frac{1}{6}+\frac{z^{2}}{120}+\cdots}$
series expansion of the function. An isolated singularity at z_{0} of $f(z)$ is said to be a pole if $f(z)$ has the following representation	
$f(z)=\frac{\phi(z)}{(z-z)^{\prime}}$	$\frac{\cos z-1}{z^{2}}=\frac{1-z^{2} / 2+\frac{z^{2} / 4-\cdots-1}{z^{2}}}{z^{2}}=-\frac{1}{2}+\frac{z^{2}}{24}+\cdots$
Theorem 33. Let $f(z)=N(z) / D(z)$ be a rational function such that the degree of $D(z)$ exceeds the degree of $N(z)$ by at least two. Then $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0$ In other words, the integral converges	
Theorem 34 (Jordan's Lemma). Suppose that on the circular arc C_{R} we have $f(z) \rightarrow 0$ uniformly as $R \rightarrow \infty$. Then $\lim _{k \rightarrow \infty} \int_{e_{n} e^{t e r} f(s) d z=0} \quad(k>0)$	\square^{4}

$$
\lim _{\lim _{0 \rightarrow 0} \int_{C^{\prime}} f(z) d z=0}
$$

 $\lim _{\lim _{0}} \int_{C_{C}} f(z) d z=i 6 C_{-1}$

On the ofther hand, for $|n| \leq|x|<1$
. $\int_{0}\left(\sum_{n=0}^{u} u^{n}\right) d u=\int_{0}^{*} \frac{d u}{1-u}=\log (1-$
 so all points $z=i$ irkh are sesimple poles with residue 1 . 3.11 Analytic Continuation
her rugge of vulidity for a given function

$\substack{\text { ditarememed ed itit } \\ \text { are interor to }}$

 $\underset{\substack{\text { spand } \\ \text { brant. }}}{\substack{\text { sut. }}}$

Residue Calculus and Applications of Contour Integration

12 Example - Analytic Continuation
$\left.\sum_{n}^{\infty} \frac{z^{n+1}}{n+1}=\int^{(} \sum^{\infty} u^{n}\right) d u$

4. 1 Cauchy Residue Theorem

$f(z)=\sum_{n}^{\infty} c_{n}\left(z-z_{0}\right)^{\prime}$

$$
\oint_{f(() d z} d=2 \pi i \sum_{j=1}^{N} a_{3}
$$

$I=\frac{1}{2 \pi} \oint_{c}^{\left.f^{\frac{f^{2}(z)}{(z)}} d z=N-p=\frac{1}{2 \pi} \arg f(z)\right] c}$

in the ampuss $R_{1} \leq\left|z-z_{0}\right| \leq R_{2}$. Then $b_{n}=C_{n}$ w with C_{n} prerousuly
dffred

Thaorem 28. Suppose $f(z)$ is reqreseted by a uniformly convegyent

$$
f(z)=\sum_{n=\infty}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

$$
f(z)=\frac{\phi(z)}{\left.(z-z)^{\pi}\right)^{T}}
$$

$$
\begin{aligned}
& =\frac{1}{(m-1)!\left(\frac{m^{-1}}{\left(z z^{-1}-1\right.}\right.}\left(\left(z-z_{0}\right)^{m} f(z)\left(z=z_{0}\right)\right.
\end{aligned}
$$

$I=\operatorname{Rese}(f-a)+\operatorname{Resec}(; a \operatorname{aexp}(i \pi / 3)+\operatorname{Res}(f ; \operatorname{aepp}(-i \pi / 3)$

4.3 Evaluation of Certain Definite Integrals
4.3.1 Infinite Endpoints

$$
\begin{aligned}
w(\xi) & =\frac{1}{2 \pi} \phi_{o} \frac{d z}{z-3} \\
& =\frac{1}{2 \pi} \log (z-z-z) l_{c} \\
& =\frac{\Delta \theta_{i}}{2 \pi}
\end{aligned}
$$

4.2 Example - Residues

Explatate the integral

$$
I=\frac{1}{2 \pi i} \phi_{c} f(x) d z
$$

 $I=\lim _{t \times x} \int_{-L}^{0} f(x) d x+\lim _{h \rightarrow \infty} \int_{a}^{R} f(x) d r \quad \alpha$ finite

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{j=1}^{N} \operatorname{Res}(f(z) ; z)
$$

Power-Reducing/Half A $\sin ^{2} u=\frac{1-\cos (2 u)}{2}$
$\cos ^{2} u=\frac{1+\cos (2 u)}{2}$
$\tan ^{2} u=\frac{1-\cos (2 u)}{1+\cos (2 u)}$
Sum-to.Product formulas
$\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$
$\cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$

Foduct to. Sum Formuas

in $u \sin v=\frac{1}{2} \cos (u-v)-\cos (u+v)$
$\cos u \cos v=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$
$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos s \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$

