1 Complex Numbers and El

Functions

y 1.2 ic Projecti
We can visualize complex numbers with a stereographic projection. Zero is
located at the North Pole, and infinity at the South Pole.

1.1 Properties N

N

We define an imaginary number as

While a complex number is defined as

Tty

The common functions R and S yield the real and imaginary parts of a
complex: mumber respectively.! We can also express complex numbers in
polar coordinates.

Figure 1: Stercographic Projection
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Using Euler’s Identity,

. 1.3 Elementary Functions
cosf +isinf = e

Similar to Real Analysis, we can define a neighborhood of some point 2 as

the alternate form is defined as
the region enclosed by

r (cos 0+ isinf) = re

r=atiy

r=VaT

tang =2

2l <€

As with sets, these can be closed, bounded, regions, domains, etc

We cam also define functions of complex numbers, and as with real valued
mumbers, they mostly work the same. The simplest function is the power
function.

The complex conjugate is defined as

"

v —iy=re”

We can define some common equivalences. .
o exp (27i) Which can be extended to define Polynomials and rational functions (as the
result of dividing a polynomial function with another
Limits also work the same, even with Radii of Convergence, ctc.

Projections and Mappings work intuitively.

- explri

~exp(3) =i

. exp (i

o exp (i) exp (i) = exp (i (6, + 62)

« exp ()" Solve for all roots of the following equation:

o exp (i) = exp (2) 2(2* +2) = 0,50 z =0 or z* = ~2, and umn
1/t to analyze behavior at . /3 + 2mn /3, n 0,1,2. Thus, the roots are

1.4 Example - Rootfinding
= exp (imf)

Another neat trick is to let

Ak denoted as Re and It = 0,213/ 9\ /ein — _g1f3 g1/ i3

1.5 Limits

Theorem 1 (¢~ Limit Definition). A compler limit can be defincd as
Jim f(z) = uy

if for every sufficiently small e > 0, there is a 8 > 0 such that

f(z) —wol <€ |z =zl <d

This is the traditional ¢ ~ & format that we're used to from real analysis,

Similarly, a function is said to be continuous if for all =,

The traditional definitions of Uniform and Absolute convergence also apply

Using these limit definitions we can define the concept of a derivative

O

1.6 Visualization

Is tricky. Wrote some code to rotate a complex function with static outpnt

supported. The hard part is you basically have a four-

imensional surface.

since you have two input variables, the real and imaginary parts, and two
output variables, the real and imaginary parts. The most straightforward
way to visualize is to graph the output real and imaginary parts separately

Figure 2: Visualization of /(=

2 Analytic Functions and Integration

2.1 Analytic Functions

In order for a complex function to be differentiable, it has to satisfy the
Cauchy-Riemann Conditions.

Theorem 2 (Cauchy-Riemann Conditions). By writing the real and
imaginary parts separately in the definition of a derivative, we get

1) = ule,y) + iv(ay)
)= tim (u(: +Any) —ury) |
A,

e (2,y) + ez, y)

oz + Ar,y) — v(zy)
Ar

Yielding the Cauchy-Riemann conditions,

Theorem 3. The function ulw.y) + iv(z,y) is differentiable
at a point = = x+ iy of a region in the complex plane if and only
if the partial derivatives u,. uy. vs. vy, are continuous and satisfy the
Cauchy-Riemann conditions at = = x + .

ZHolomorphic is sometimes used as well (or instead) of analytic
) //en.uikiped: Ki/Anal

analytic_functions

2.5 Multivalued Functions 12.8  Example - Branch Points/Cuts (cont.)

A simple example of this is the square root function which takes on different Find the location of the branch points and discuss a branch cut structure
values for n even or odd associated with the function:

z=wt w=yE is a rational function singular at =
/200 278 branch points.

=0, but single-valued, so no

We can define these “points” where complex functions take on multiple
values as branch points. In the same way that they're referred to as branch
points, branches of a multivalued function are when we restrict to only one
set of continuous values. A branch cut is this restriction process.*

Log is more complicated, and we define it as such.

3 is entire single-valued function so the only branch points
are those where 22 — 3 = 0 or 2% Thus, there are three
branch points, +v/3, and = = oc. A branch cut must make
sure there is no possibility going around and single of them, in this
case it st comnect all three points. E.g. consider a cut on real axis
N 3,400)}

g(2) = logr + i), + 2nmi,  n=0,£1,+2, 0<6, <27

2.6 Example - Branch Points/Cuts
points are those of vz o0. However, doing

Find the location of the branch points and discuss possible branch cuts for the circle argument = — 1 = me®, 2+ 1 — rge®, 6y — 0, + 27
the following functions: 0 — 2m, one sees that = = oo is not a branch point since
Lo(z=i) exp (2mi +2mi)/2 = 1 which corresponds to encircling both = = 1
Let z — i = ee® which is a circular contour centered at z = i. We and = = —1, equivalent to encircling just = = oo. Thus, 2 = 00 is not
have just a power function in terms of ¢ seiand s =00 a branch point even for vz~ 1. 1 are branch points, and

are branch points. Any line connecting and = = i is a branch a branch cut connecting them s {= = rjz € [~1,1]}
4ly € 1, +00)} Is as good as any. There aro 3 distinct

2.9 More Complicated Multivalued Functions and

2 X Riemann Surfaces
£ —log(z—2). Again, this is —log(z) but with shiftd
origin. So the branch points are = = 2 and = = oc. A branch cut If we have functions like the following
must connect the branch points, it can be {z = x|z € [2,+00)} or e
{z=alz € (~00,2]} w=[(z—a)(z—b)]

We need to use a slightly more complicated branch cut /structure. We know
that the points = = a.b are both branch points (by letting = = a + ee
and as 6 varies from 0 to 27, w jumps from ¢"/2 to —"/2).
define a branch cut as follows.

ey e 7, —

2.7 Example - Rootfinding (cont.)

and so we can

Solve for all values of z: 4+ 2

442 =250

Therefore —a=re®™ 0010,

shizintomin=z=i(r—1+2m)nel

TThe real analogy here is & function like /%2 € R. 0 is a branch point, and we
often times just examine the branch where v > 0. The analogous branch cut is

Our equation now becomes

W= () 2oz

This process extends to more complicated functions, as for any w of the2

form

w=[(z a1z~ w2) za)]"™
we can define our branch cuts to be
. o
s = e
yielding
04044 00)

w= (e

2.10 Example - Branch Points/Cuts (cont.)

Find the location of branch points and discuss a branch cut str
associated with the function:

ture

This is (up to a constant) log of rational function, so the branch points are
those where (= +a)/(z — a) = 0 or oo, Le. z = %a. As for z = oo, it is not
a branch point, as the limit equals 1, not zero. A cut must connect the two

points, so a possible one is interval [~a.a] on the real axis,

2.11 Riemann Surfaces

Instead of considering the normal complex plane with arbitrary “cuts”

Lt

can be useful to instead consider a surface with multiple “sheets” Any
multivalued fimetion only has one point that corresponds to cach point on

the sheet. This way, for any given sheet, the function is s

For the function w'/2, since we have two branches,
is two-sheeted.
have infinite sheets.

ngle-valued

our Riemann surface
For the log function, since it is infinitely multivalued, we

Figure 3: Riemann Surface for log(z)

212 Complex Integration

Consider a function f(t) = u(t) + iv(t). This function is integrable if u and
v are integrable (with the same properties applying).

/. S(t)ydt —[u(/)luf

Defniug a curve on the comples: plane can be done parametrically, with
form®

2(t) = w(t) +iy(t)
SThese curves are
+ Simple Gurve or Jordan Are if it docs not intersect tscll

+ Simple Closed Curve or Jordan Curve if the endpoints meet

is defined to be®

‘The path (contour) integral of function f on contour -

JREL Kﬂzn]):’(f)'if

This is really a line integral in the (z, ) plane.

Theorem 4. Suppose F(=) is an analytic function and that f() =
(2) is continuous in a domain D. Then for a contour C lying in D
with endpoints zy and 2,

[r@as= e -

Since we can think of the parameterized complex plane as a vector fild,
Jor closed curves, we have

glgv f(z)dz = 9‘)’ F'(z)dz=0

Note that cverything here hinges on the analyticity of F and the
continuity in domain D.

Theorem 5. Let f(2) be continuous on a contour C. Then

| rera:

where L is the length of C and M is an upper bound for || on C.
Are length can be defined (from Calc III) for o parameterized curve
with form =(t) = u(t) +iv(t) as

[T

<ML

() dt

Hey, this is nice and casy! If the given function is analytic on and in
its domain, then it just equals zerol If there is a singularity on the inside
of the domain, deform the contonr so that you have 2 curves of opposite
2, and you can just solve for the one that surrounds

direction. Then
the singularity

Conton
10 as a Jordan Contour

ro defined as piecewise smooth connected ares. Simple closed is referred

32.13 Example -

Evaluate |,

Contour Integration

2 for a contour from 2 =0toz=1toz=1+i

/ (& — iy)(dz + i dy)
c

:/;.{A. .L ‘

—hiy-wt

(1 —iy)(idy)

2.14 Cauchy’s Theorem

Theorem 6 (Cauchy). If a function [ is analytic in a simply connectes
domain D, then along a simple closed contour C in D

fﬁ“f(:u,:u

We also require that f'(2) is also continuous in D

If f(2) is analytic everwhere interior to and on a simple closed
contour C, then , f(=) dz = 0.

Again, NOTE that everything hinges on the fact that D must be simply
connected. In order to use this, you need a simply connected domain D
XD a simple closed contour C

To best apply Cauchy’s Theorem, we can use tricks like turning a complex
contour into several simple contours, and deforming a simply connected
domain so that the function is analytic on the domain.

2.15 Example -

Evaluate
L
2mi Je

where C'is a simple closed contour
The fanction /(z) = 1/(z — a)" is analytic for all z # a. Hence if C' does
not enclose = = a, then we have T ‘auchy’s

Cauchy’s Theorem

m=12....M

= 0. 1f C encloses = = a, we use C;

Theorem to deform the contour to C,. a small, but finite circle of radius 142,17~ Cauchy’s Integral Formula, Tts 7 Generalization
centered at = = a. Namely, and Consequences

//(:M: [

We evaluate [, f

fl)=1/(z-a)"
Theorem 7. Let f(z) be analytic interior to and on a simple closed
contour C. Then at any interior point =

L
2 Jo

This is referred 1o as Cauchy’s In

2)dz by letting

z—a=re’ dz = ie''rdf

in which case

Lo
e

2
jemttmiy i gy g I
0 else

ul Formula.

Theorem 8. If f(z) is analytic interior to and on a simple closed
(). k exist in the

contour C then all the derivatives [
domain D interior to C, and

Therefore,

0 == aoutside C
T={0 :=ainsideC, m#1
1 ainside C, m=1

2.16  Example - Polynomials and Cauchy’s Theorem [y 000

point where f = u+iv is analytic

es of u and v are continuous at any

Let P(2) be a polynomial of degree n, with n simple roots, none of which
Tie- on a simple clsoed contonr C. Evaluate

Theorem 10 (Lioville). If f(z) is entire and bounded in the = plane
Because P(=) is apolynomial with distinct roots, we can factor it as (including infinity), then f(2) is a constant.
P(2) “(z—ay)

Where A is the coefficient of the term of highest degree. Because

Theorem 11 (Morera). If f(2) is continuous in a domain D and if

95}{:)4;4»

for every simple closed contour C lying in D, then f(2) is analytic in

%m(.-\(; —m)(z—az)- (2= ay))

Hence, using the same method as above, we have

794 Pf‘f;yr. = number of roots lying within €'

Theorem 12 (Maxinumn Principles). 1. If f(2) is analytic in a
domain D, then |f(=
is a constant.

)| cannot have a mazimum in D unless f(z)

If f(z) is analytic in a bounded region D and |f
inthe closed region D, then | f(
boundary of the region.

(2)] is continuous
2)| assumes its mazimum on the

Theorem 13 (Generalized Cauchy Formula). If /€ exists and is
continuous in a region R bounded by a simple closed contour C', then at

any interior point =
1 // ((U/d(
7 W\ T

) a0

s0 . f1

Let /(. ;m» n entire function with m)
constant. Show that f( . where A is a constant
Using the generalized Canchy formula,

1 Q)
sz e

—2mif6 =

where C'
Then

={lc-

-
L/ CEAB by o112 /my = ¢
o g

is entire and bounded, so it

A, then f(2) + B, where A, B are constants. But,
2)1 < Clel for all 2, taking || - 0, we got B = 0. Thus, /(=
claimed.

S0 7'(2)

2.19 Theoretical Developments

| < Clz for all z, where Cis a on only ¢, and not z. In other words, if for an
f(2)

= R} is the circle of radius R around = in the (-plane.

constant by Liouville theorem. Let

Theorem 14 (Cauchy-Goursat). If a function f(2) is analytic at all
points interior to and on a simple closed contour, then

$oer

0

3 Sequences, Series,
Complex Functions

3.1 Definitions of Complex Sequences, Series, and

Their Basic Properties

We can denote a sequence of fanctions that converge to some given function

as

Jim £,(2) = £(2) & fols) = S < €

If the limit does not exist, or is infinite, the sequence is said to diverge

for those values of =

and Singularities of

6 We say the sequence of functions converges uniformly if we can choose N
the n function is € close

Theorem 15. Let the sequence of functions f,(=) be continuous for
each integer nand let f,(2) converge to [(z) uniformly in a region R.
Then f() is continuous, and for any finite contour C inside R

Theorem 16 (Weierstrass M Test). Let [b;(z)] < M, in a region
R, 11,!/]! M; constant. If 332, M; converges, then m( series S(z) =

2% by(2) converges uniformly in R

Theorem 17 (Corollary: Ratio Test). Suppose [by(=)

is bounded, and

Jor M constant. Then the series

is uniformly convergent.

3.2 Example - Convergence

Show mm the thu\\mg series converges uniformly in the given region:

pone <l <

ice. the series is bounded above by a convergent mumerical series, which
‘means numerical convergence by the Weierstrass M-test,



https://en.wikipedia.org/wiki/Analytic_function#Properties_of_analytic_functions
https://en.wikipedia.org/wiki/Analytic_function#Properties_of_analytic_functions

3.3 Example - Radius of Convergence

7. it converges uniformly in |2| < R for R < |2,
N Theorem 24. Let Dy and Dy be two disjoint domains, whose

boundaries share a common contour T Let f() be analytic in Dy and
continuous in Dy UT and g(=) be analytic in Dy and continuous in D,UT.
and let f(z) = g(=) on . Then the function

in the annulus Ry < |z — z0| < Ro. Then b, = C,., with C,, previously
Theorem 26 (Laurent Serics). A function f(z) analytic in an annulus | defined
R < < Ry may be represented by the expansion

Theorem 19 (Taylor Series). Let f(2) be analytic for || < R. Then

&)=Y Calz =)
ot 1) 1(z) zeD -
Therefore it converges for |2| < 1 and the radius of convergence is H(z) =1/ z€el in the region Ry < Ra < |2 = 20| < Ry < Ry, where
where 9(2) z€D; i
: is analytic in D = Dy UT U Dy, We say that g(z) is the analytic 2mi Jo (2 = =)
" anam ; b= continuation of f(2).

it

and C is any simple clos
(n+ )z | T e DI+ 1/n)"

the inner boundary

d contour in the region of analyticity enclosing
= 2|

converges wniformly in |z| < By < R

)
Therefore R = 0.

The largest number R for which the power series converges inside the disk
3.4 Taylor Series 2] < R is called the radius of convergence. Theorem 25. I f
domain D containing
is a neighborhood abou

is analytic and not identically zero in some
= 2, then its zeroes are isolated; that is, there
2, f(z0) = 0, in which f(2) is nonzero,

A power series about the point = = 2 is defined as

f) =30

Theorem 20. Let f(2) be analytic for |2| < R. Then the series obtained
by differentiating the Taglor series termwise converges uniformly to f'(z)
R

in sl < R
=
=Y b
= Theorem 21. If the power scrics converges for |2| < R. then it can
With by, 2 are constants. WLOGT we can work with be differentiated termwise to obtain a uniformly convergent series for

|| <R <R

“Theorem 22 (Comparison Tst). Let the sries T3y a2 comerye for

which is the 2 |2l < R U byl < lag| forj = J, then the series 3

Theorem 27. The Laurent series defined above of a function f(2) that

b2 also converges is analytic in an annulus Ry < |2 — | < Ry converges uniformly to
Jor |2] < f(2) for pr < |z = 20| < pa, where Ry < py and Ry > pa.
Theorem 18. If the serics
1) =07 Theorem 23. Let cach of two functions f() and g(=) be analytic in Theorem 28. Suppose f(=) is represented by a uniformly convergent
=

a common domain D. If f(z) and g(z) coincide in some subportion

D'C D or on a curve T interior to D, then f(z) = g(z) everyuhere in
D.

converges for some z, # 0, then it converges for all = in |2 < |Z,|

papyam—.

Withont Loss Of Generality

where 10We call this an Nth order pole if
strength of the pole is ().

> 2 and a simple pole if N = 1. The 0 is a removable simple pole. 110n the other hand, for [u] < |2| < 1,

“This is a generic approach, however if f(z) has a pole in the neighborhood!2  «+ f(:

5.0 < a < 1 There are singular points at =

. s=hs the ratio of two entire functions, so all simple poles are of z, then it’s a lot easier. Define Cracsp(in)), and acxp(—in/3); all of these are imside the wnit
An isolated singular point that is neither removable nor a pole is called ned by sinh 2 oz . * du circle, so
an essential singular point. These have “full” Laurent series expansion then, since exp(irk) = exp(—irk) ,( 1), one has du= [ =log(l-2) ) , . ) . . )
i A== 1= Res(f; —a) + Res(f; aexp(in/3)) + Res(f; a exp(~in/3
+ Expand the function " . (1" cosh(u) _ cosh(u) _ 1 wlu‘[v a branch analytic inside |2 < 1 is implied. Such a branh of log(1 - =) —atl
| Theorem 29. If f(2) has an essential singularily al = = zo, then Th() " B el e v o b B2 where (=) is analytic in the neighborhood of 29, m is a positive integer, and P T—
L z /, Jor oy somples mumber s (=) ecomes arbitoartly close to 1 in (=fsinh(u) 5 3is obtained e.g. if one makes a branch cut [1, +00) on the positive real a—acP)(~a ~ac
) = ——— = for any complex nus w, f(z mes arily close to w in a Then the b 1 p L p if ¢(20) # 0, / has a pole of order m. Then the residue of f(z) at = is given nfd
[ 2+ 2i) neighborhood of zo. That is, given w, and any € > 0, 8 > 0, there is a = so all points z = ik are simple poles with residue 1 Then the branch is analytic in €\ [1, +oc), and, if one sets log1 = 0 to by ae™ 41
i a Laurent series in the following regions. cuch that specify the branch, then it is equal to the first series in |2| < 1. Then this @ B T a)(ac P
Analytic C . . branch is the analytic continuation of the series to the region C minus the ant ae=i=/38
<1 1) —wl <e 3.11  Analytic Continuation ot o, 5)( __ C _
£ m—I\a {ae 7 + a){ac =7 — ae"7%)
3 el s This is the process of extending the range of validity for a given function L o
whenever 0 < 2| < 4. la 4 2 — 2)™ (2 -
o into a larger domain. . o (== 20)" ()=
4 Residue Calculus and Applications of v
An entire functi o that is analyti rywhe he lex plane. . o f(2) = sin(1/2). Since 0 is the only singular point of f(z), we
An entire function s one that is analytic everywhere on the complex plane Theorem 30. A function that is analytic in a domain D is uniquely Contour Integration If it’s the fraction of two rational functions, N and D it can be as casy as o a Laurent series expansion about = = 0. Thus, Res(f:0) = 1 and
A meromorphic fnction is one that has only poles in the finite complex determined cither by values in some inferior domain of D or along an N(z0)/D'(z0). Sometimes we care about the residuc at infinity. I=1
Cl<p<e plane. A cluster point is an infinite sequence of isolated singular points that arc interior to D. 41 Cauchy Residue Theorem
? cluster in a neighborhood. A boundary jump discontinuity is where two
analytic functions separated by a contour do not equal each other at the ve already discussed the Laurent expansion of f(z) to be, for some Res(f(: = f(z)dz 4.3 Evaluation of Certain Definite Integrals
contour. Theorem 31 (Monodromy Theorem). Let D be a simply connected *“"1“3""; () o the esion . defined by 0 < 2 = 2| < p, with = 1 1)1, We can use complex integration to solve real integrals as well
domain and f(z) be analytic in some disk Dy C D. If the function cn | SOlated singular poin wm P \E f7)dt

3.10 Example - Singularities b analytically continued along any two distinct smooth contours Cy and ‘

4.31 Infinite Endpoints
Cs to a point in D, and if there are no singular points enclosed within
Cy and Cy. then the result of cach analytic continuation is the same and

the function is single valued,

Discuss all singularities of the following functions.

The value w(z;) is called the winding nmumber of the curve C around the
. It is a rational function, it only has simple poles at the roots of

point z;. This value represents the number of times that €' winds around For integrals of the form
. Positive means counterclockwise.

2/5 _4/5+2i/5
-1 - 2i

;1 o (et s s el / f(x)da
. , . : Some functions can't be analytically continued due o a singnlarity referred (o) = 2L o
542 2 () = 5=
)Z L (4 5+ 2 v/o) Z . s Punction sinz Is entire, 50 10 as a natural barrier. where €' is a simple closed contour in D. The negative part of the series ’m T where f(x) is real valued. These integrals converge if the following two
P < is referred o as the principal part, while the coefficient O is called the 1 2l limits exist,
3.12 Example - Analytic Continuation residue of f(z) at 2, denoted €'y = Res(f(2); z0). =g loe (= c . "
3.9 Si ities of Complex i Ab; . . .
P Discuss the analytic continuation of the following function. =57 I=fum [ f@)det fim [ f@)de afiite
Anisolated singular point s a point where a given single-valued function is . .o g Theorem 32 (Canchy Residue Theorem). Let f(=) be analytic inside
not analytic, but analytic in the neighborhood surrounding the point. 2" /’ N ) du and on a simple closed contour C, except for a finite number of isolated N To evaluate this integral, we can take C to be a large semicircle that encloses
Removable singularities can be “removed” by using a Taylor or Laurent 50 it has second order pole at = = 0 of strength 1, the only simple P 1 ; singular potnts 71,..., 2y located fnside C. Then 4.2 Example - Residues all singularities of f(=). Using this, we have
series expansion of the function. pole.

The first series inde orges 2| < 1 where i Evaluate the integral
An isolated singularity at 2 of /(2) is said to be a pole if f(2) has the The first series indeed converges only for || < 1 where it defines an analytic ¥

ol st  The mumerator is an entive funcion, o the only simple pole function. For [u] < |2| < 1, the integrated series converges uniformily, so f f2)dz =21y a; B ?g o
°< Sntl 2mi o
2 I _ e
£(2) [2+ 24 / (Z“ ) du=3 o , v 7, 1 where ay s the residue of f(2) at = = =, denoted by a; = Res(f(=)
=

where C is the unit circle centered at the origin, for the following f(2).

& 4 Co-Function Identities » Power-Reducing/Half Angle Formulas
Theorem 33. Let f() = N()/D(2) be a rational function such that Theorem 36. If on a circular are Cy of radius B and center = = el Ang u
the degree of D(2) exceeds the degree of N(z) by at least two. Then 2f(2) = 0 uniformly as R — oo, then . 1 - cos(2u)
sy = —— R
lim / £z)dz Jim / F2)d
w5 Joy = o, 1+ cos(2u)
In other words, the integral converges =
Figure 4: Small circular are C, Even-Odd Identities N .
fia(~%) = —sinw co(~x) = cors tan(-3) tanty = L=00(2Y)
| 4 1 cse(-u) = —cscu sec(—u) = secw cot(—x) Lk cos(2¥)
Theorem 34 (Jordan's Lemma). Suppose that on the circular are Cp Theorem 37 (Argument Principle). Let f(2) be a meromorphic
we have f(z) — 0 uniformly as R — oc. Then Jfunction defined inside and on a simple closed contour C, with no zeros ‘Sum-to-Product Formulas
or poles on C. Then
- . . . utv
’%un/ e f(2)dz = (k> 0) f ) | nnu+.mu=2m( a cm(
w2 e Sl
. . utv) .
where . and P are he mimbers of seos and oles, esetiely. of sinu = sinv = 2cos ( “3) sin
f(z) inside C; where o multiple zero or pole is counted according to
its multiplicity, and where arg (=) is the argument of £(); that _
Theorem 35. 1. Suppose that on the contour C, we have (= — B " ! . 908 () cos (10
) 0 wniformiy e 20, Then F(2) = (=) exp( xmgf( ) and [arg f(2)]. denotes the change in the cosu+cosv = 2cos (5 ) eos (5=
argument of f(=) over C
lim / G conu — ¢
I ) http://wew. sosmath. con/trig/Trigh/trigh/trigh. html SO RIS EIR=ER
2. Suppose f(2) has a simple pole at zo with residue
Res(f(e); ) = C-a. Then for the contour G, Theorem 38 (Rouché). Let /(=) and g(z) be analytic on and inside Reclprocal Identties sin(u £ v) = sinucos vk cos usinv e s—
a simple closed contour C. If |f(2)| > |g(2)| on C, then f(2) and 1 1 cos(u % v) FAC PR
9(2)] have the same number of zeros inside the contour C. sinu = cosu= —— tanu= —— ampcal S S D 1
[£(2) + g(2)] have the same number of zeros inside the contour C o poos P ""“("*")_lxmumnu mmmzrmu_u)_m(u”)]
where the integration is carried out in the positive 1 . 1 .
counterclockwise) sense seu = Snu =cosu "= tanu
(@ ) sinu tanu . cosucosn = 3 foos(u — v) +cos(u +v)]
Pythagorean Identities. ) )
sin(2u) = 2sin ucosu 1
sinfucostu=1 1+tan?u=sec?u 1+cot?u = csc’u cos(2u) = cos? u — sin’ u sinucosv = 5 sin(u +v) + sin(u — v)]
P 2cos’u—1
TSRS 1—2sin’u cosusin = —[mn(u+v)—ﬁm(u—u)]
sinu cosu 2tanu
tanu = —— cotu
cosu
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