1 Complex Numbers and Elementary 1.2 Stereographic Projection	1.5 Limits	Theorem 3. The function $f(z) = u(x,y) + iv(x,y)$ is differentiable
Functions We can visualize complex numbers with a stereographic projection located at the North Pole, and infinity at the South Pole.	Zero is Theorem 1 ($\epsilon - \delta$ Limit Definition). A complex limit can be defined as	at a point $z = x + iy$ of a region in the complex plane if and only if the partial derivatives u_x, u_y, v_x, v_y , are continuous and satisfy the
1.1 Properties	$\lim_{t\to\infty} f(z) = w_0$	Cauchy-Riemann conditions at $z = x + iy$.
	if for every sufficiently small $\epsilon > 0$, there is a $\delta > 0$ such that	
While a complex number is defined as	$ f(z) - w_0 < \epsilon$ $ z - z_0 < \delta$	2
z = x + iy The common functions \Re and \Im yield the real and imaginary parts of a Figure 1: Stereographic Projection	This is the traditional $\epsilon - \delta$ format that we're used to from real analysis.	د
complex number respectively. ¹ We can also express complex numbers in polar coordinates. These points are		
$x = r \cos \theta$ $4r$ $4u$ $2 z ^2$	Similarly, a function is said to be continuous if for all z, Figure 2: Visualization of $f(z) = z^3$	
Using Eular's Identity	Figure 2: Visitalization of $f(z) = z^2$	
$\cos \theta + i \sin \theta = e^{i\theta}$ 1.3 Elementary Functions	$\lim_{z \to \infty} f(z) = z_0$ 2 Analytic Functions and Integration	
the alternate form is defined as the alternate form is defined as the region enclosed by	2.1 Analytic Functions	
$\begin{split} z &= x + iy = r \left(\cos \theta + i \sin \theta \right) = r e^{i\theta} \\ r &= \sqrt{x^2 + y^2} = z \end{split} \tag{2.10}$	The traditional definitions of Uniform and Absolute convergence also apply. In order for a complex function to be differentiable, it has to satisfy the Cauchy-Riemann Conditions.	
$r = \sqrt{x}$ $r = r = r$ $tan \theta = \frac{y}{x}$ The complex column to t_{0} defined as	Using these limit definitions we can define the concept of a derivative. Theorem 2 (Cauchy-Riemann Conditions). By writing the real and	
The complex conjugate is defined as $x - iy \equiv re^{-i\theta}$ mumbers, they mostly work the same. The simplest function is the function.	$f'(z_0) = \lim_{\Delta z \to 0} \left(\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \right) = \lim_{z \to u_0} \frac{f(z) - f(z_0)}{z - z_0} $	
$f(z) = z^n$ We can define some common equivalences.		
 exp(2πi) = 1 Which can be extended to define Polynomials and rational function exp(πi) = −1 Limits also work the same, even with Radii of Convergence, etc 	(as the $\begin{aligned} f'(z) = \lim_{\lambda \to \infty} \left(\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x} \right) \\ = u_i(x, y) + iu_i(x, y) \end{aligned}$	
• $\exp(\frac{\pi i}{2}) = i$ • $\exp(\frac{3\pi i}{2}) = -i$ Projections and Mappings work intuitively.	1.6 Visualization $Y_{ielding the Cauchy-Riemann conditions,}$	
• $\exp(i\theta_1) \exp(i\theta_2) = \exp(i(\theta_1 + \theta_2))$ 1.4 Example - Rootfinding	$u_{-} = v_{-}$ $u_{-} = -u_{-}$	
 exp(iθ)^m = exp(imθ) Solve for all roots of the following equation: z⁴ + 2z = 0. z(z³ + 2) = 0, so z = 0 or z³ = -2, and then x³ = 2, e^{3iθ} = eⁱ x³(z⁴ + 2) = 0, so z = 0 or z³ = -2, and then x³ = 2, e^{3iθ} = eⁱ 	$\Rightarrow \theta = \begin{bmatrix} \text{Is tricky. Wrote some code to rotate a complex function with static output} \\ \text{supported. The hard part is you basically have a four-dimensional surface,} \\ u_r = \frac{u_{\theta}}{r} v_r = -\frac{u_{\theta}}{r} \end{bmatrix}$	
Another near trick is to let $z = 1/t$ to analyze behavior at ∞ . ¹ Also denoted as Re and Im ² Also denoted as Re and Im	since you have two input variables, the real and imaginary parts, and two output variables, the real and imaginary parts. The most straightforward way to visualize is to graph the output real and imaginary parts separately.	² Holomorphic is sometimes used as well (or instead) of analytic. ³ https://m.uikipedia.org/uiki/Amalytic_function#Properties_of
		analytic_functions
2.5 Multivalued Functions 12.8 Example - Branch Points/Cuts (cont.) A simple example of this is the square root function which takes on different Find the location of the branch points and discuss a branch cut	This process extends to more complicated functions, as for any w of the 2 form	The path (contour) integral of function f on contour z is defined to be ⁶ 32.13 Example - Contour Integration $\int_{-f(z)>k} \int_{0}^{k} \int_{0}^{z} f(z) h(z) h(z) h(z) = 0$ Evaluate $\int_{0}^{\infty} \overline{z} dz$ for a contour from $z = 0$ to $z = 1$ to $z = 1 + i$.
values for n even or odd. associated with the function: • $f(z) = \frac{z-1}{z-1}$	$w = [(z - x_1)(z - x_2) \cdots (z - x_n)]^m$	$\int_C J(z) dz = \int_a J(z(t)) z(t) dt$
$z = w^2$ $w = \sqrt{z}$ $= v^{1/2} e^{i\theta_p/2} e^{\pi i}$ This is a rational function singular at $z = 0$, but single-value branch points.	d, so no we can define our branch cuts to be	$J_C = J_C$
We can define these "points" where complex functions take on multiple $f(z) = \log (z^2 - 3)$ Here $z^2 - 3$ is entire single-valued function so the only bran	a points	Theorem 4. Suppose $F(z)$ is an analytic function and that $f(z) = \int_{x=0}^{x} dx + \int_{y=0}^{y} (1-iy)(idy) f(z)$ is continuous in a domain D. Then for a contour C lying in D
values as branch points. In the same way that they're referred to as branch points, branches of a multivalued function are when we restrict to only one set of continuous values. A branch cut is this restriction process. ⁴	$z - x_k = r_k e^{i\theta_k}$ t make	$ \begin{aligned} F'(z) & \text{ is continuous in a domain } D. & \text{ Then for a contour } C & \text{lying in } D \\ & \text{with endpoints } z_1 & \text{and } z_2 \\ & & -1 + i \end{aligned} $
Log is more complicated, and we define it as such. sure there is no possibility going around and single of ther case it must connect all three points. E.g. consider a cut on	eal axis	$\int_C f(z) dz = F(z_2) - F(z_1)$
$\begin{split} w &= \log(z) = \log r + i\theta_p + 2n\pi i, \qquad n = 0, \pm 1, \pm 2, \dots, \qquad 0 \leq \theta_p < 2\pi \qquad \{z = x x \in [-3, +\infty)\}. \\ & \bullet f(z) = \exp \sqrt{z^2 - 1} \end{split}$	$w = (r_1 r_2 \cdots r_n) e^{i u (\theta_1 + \theta_2 \cdots + \theta_n)}$	Since we can think of the parameterized complex plane as a vector field, for closed curres, we have
2.6 Example - Branch Points/Cuts Since function e ^z is entire (analytic on plane) the only possib points are those of √z ² − 1, i.e. z = ±1 and z = ∞. However	r, doing	$\oint_{C} f(z) dz = \oint_{C} F'(z) dz = 0$ Theorem 6 (Cauchy). If a function f is analytic in a simply connected domain D, then along a simple closed contour C in D
Find the location of the branch points and discuss possible branch cuts for the following functions: the circle argument $z - 1 = r_1 e^{i\theta_1}$, $z + 1 = r_2 e^{i\theta_2}$, $\theta_1 \rightarrow \theta_2 \rightarrow \theta_2 + 2\pi$, one sees that $z = \infty$ is not a branch point of the circle argument $z - 1 = r_1 e^{i\theta_1}$.	t since	$\int_{C} f(z) dz = 0$ Note that everything here hinges on the analyticity of F and the $\oint f(z) dz = 0$
 (z − i)^{1/3} Let z − i = ee^{dy}, which is a circular contour centered at z = i. We have just a power function in terms of (= z − i, so z = i and z = ∞. Thus, z = a branch point even for √2² − I. But z = ±1 are branch point even for √2² −	z = 1 c is not Find the location of branch points and discuss a branch cut structure associated with the function: Figure 3: Riemann Surface for log(z)	continuity in domain D. J _C
are branch points. Any line connecting $z = \infty$ and $z = i$ is a branch a branch cut connecting them is $\{z = x x \in [-1, 1]\}$	(z) = (z - 1) (z + a)	We also require that $f'(z)$ is also continuous in D. f'(z) is analytic exervitier interior to and on a simple closed contour C. Then
cut, e.g. $\{z = iy y \in [1, +\infty)\}$ is as good as any. There are 3 distinct branches. 2.9 More Complicated Multivalued Function	and I	Again, NOTE that everything hinges on the fact that D must be simply
$\frac{2 \cdot \log(\frac{1}{z-2})}{\log(\frac{1}{z-2})} = -\log(z-2), \text{ Arain, this is } -\log(z) \text{ but with shiftd} $ Riemann Surfaces	This is (up to a constant) log of rational function, so the branch points are v are integrable (with the same properties applying). these where $(z + a)/(z - a) = 0$ or ∞ , i.e. $z = \pm a$. As for $z = \infty$, it is not	$ J_C ^{\gamma_C \gamma_M} \ge 3.2$ AND a simple closed contour C.
origin. So the branch points are $z = 2$ and $z = \infty$. A branch cut If we have functions like the following must connect the branch points, it can be $\{z = x x \in [2, +\infty)\}$ or $\ z = x x \in (-\infty)$ $w = [(z-a)(z-b)]^{1/2}$	a branch point, as the limit equals 1, not zero. A cut must connect the two points, so a possible one is interval $[-a, a]$ on the real axis. $\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$	where L is the length of C and M is an upper bound for $ f $ on C. Are length on the defined (from Calc III) for a parameterized curve with form $e(f) = w(f) + w(f)$ as $w(f) = w(f) + w(f)$.
$\{z = x x \in (-\infty, 2]\}$. We need to use a slightly more complicated branch cut/structure.		domain so that the function is analytic on the domain.
2.7 Example - Rootfinding (cont.) that the points $z = a, b$ are both branch points (by letting $z = a$ Solve for all values of $z: 4 + 2e^{z+i} = 2$. that the points $z = a, b$ are both branch points (by letting $z = a$ and as θ_1 varies from 0 to 2π , w jumps from $q^{1/2}$ to $-q^{1/2}$), and $z = a$.	$t \in e^{a_i}$ $t \in e^{a_i}$ 2.11 Riemann Surfaces Defining a curve on the complex plane can be done parametrically, with form ⁵	$\int_{-\pi}^{\pi} \sqrt{\left(u'(t)\right)^2 + \left(v'(t)\right)^2 dt}$ 2.15 Example - Cauchy's Theorem
Solve for an values of z , $u + 2e^{-i} - 2$, $4 + 2e^{i+i} = 2 \Rightarrow e^{i+i} = -1 = e^{ix+2\pi in}, n \in \mathbb{Z}$ define a branch cut as follows. $z - b = r_1 e^{ib_1}$	Instead of considering the normal complex plane with arbitrary "cuts", it can be useful to instead consider a surface with multiple "sheets". Any	Hey, this is nice and easy! If the given function is analytic on and in Evaluate its domain, then it just equals zero! If there is a singularity on the inside
Therefore $z - a = r_2 e^{i\theta_2}$ $0 \le \theta_1, \theta_2 < 2\pi$	multivalued function only has one point that corresponds to each point on the sheet. This way, for any given cheet, the function is circula-valued	its domain, then it just equals zero! If there is a singularity on the inside of the domain, deform the contour so that you have 2 curves of opposite direction. Then $C_1 = C_2$, and you can just solve for the one that surrounds $\mathcal{I} = \frac{1}{2\pi i} \oint_C \frac{1}{(z-a)^m} dz, \qquad m = 1, 2, \dots, M$
$z + i = i\pi + 2\pi in \Rightarrow z = i(\pi - 1 + 2\pi n), n \in \mathbb{Z}$ Our equation now becomes	For the function w ^{1/2} , since we have two branches, our Riemann surface Simple Curve or Jordan Arc if it does not intersect itself.	the singularity. where C is a simple closed contour.
⁴ The real analogy here is a function like $\pm \sqrt{r}$, $x \in \mathbb{R}$. 0 is a branch point, and we often times just examine the branch where $\sqrt{r} > 0$. The analogous branch cut is $x > 0$. $w = (r_1 r_2)^{1/2} e^{i(\theta_1 + \theta_2)/2} e^{i(\theta_1 + \theta_2$	is two-sheeted. For the log function, since it is infinitely multivalued, we Simple Closed Curve or Jordan Curve if the endpoints meet. have infinite sheets.	⁶ Contours are defined as piecewise smooth connected arcs. Simple closed is referred to as a Jordan Contour as a Jordan Contour for all $z \neq a$. Hence if C does not enclose $z = a$, then we have $I = 0$. If C encloses $z = a$, we use Cauchy's
Theorem to deform the contour to C_a , a small, but finite circle of radius r 42.17 Cauchy's Integral Formula, Its $\overline{\partial}$ General context of $z = a$. Namely.	Theorem 12 (Maximum Principles). I. If f(z) is analytic in a	so $\oint_{0,c} f(z) dz = -2\pi i/6 = -i\pi/3$. Let $f(z)$ be an entire function with $ f(z) \le C z $ for all z , where C is a on only ϵ , and not z . In other words, if for any z , the n^{th} function is ϵ close
$\int f(z)dz = 0 \qquad f(z) = 1/(z-a)^m$	domain D, then $ f(z) $ cannot have a maximum in D unless $f(z)$ is a constant	Let $f(z)$ be an ender nucleon with $f(z) \le v z $ of an z , where C is a onoing e , and not z . In other words, it on any z , the n -inductor is e cases constant. Using the generalized Cauchy formula,
$\int_{C} \int_{C} \int_{C$	closed 2. If $f(z)$ is analytic in a bounded region D and $ f(z) $ is continuous in the closed region \overline{D} , then $ f(z) $ assumes its maximum on the	1 $f_{-}(\ell)$ Theorem 15 Let the sequence of functions $f(x)$ be continuous for
$z - a = re^{i\theta}, dz = ie^{i\theta}rd\theta \qquad \qquad f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$	boundary of the region.	Then $f(z)$ is continuous, and for any finite contour C inside \mathcal{R}
in which case	Theorem 13 (Generalized Cauchy Formula). If $\partial I/\partial \overline{\zeta}$ exists and is	Then $\lim \int f_n(z) dz = \int f(z) dz$
$\mathcal{I} = \frac{1}{2\pi i} \oint_C \frac{1}{(z-a)^m} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{1}{r^m e^{imp}} e^{i\theta^m} d\theta$ This is referred to as Cauchy's Integral Formula.	Theorem 13 (Generalized Cauchy Formula). If ∂//∂ζ exists and is continuous in a region R bounded by a simple closed contour C, then at any interior point z	$ f' \leq \frac{1}{2\pi} \oint_C \frac{ f(\zeta) }{ \zeta - z ^2} d\zeta \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{C(z + R)}{R^2} R d\theta = C(1 + z /R) = C$
$= \frac{1}{2\pi i} \int_{0}^{2\pi} i e^{-i(m-1)\theta} r^{-m+1} d\theta = \delta_{m,1} = \begin{cases} 1 & m = 1 \\ 0 & \text{eke} \end{cases}$ Theorem 8. If $f(z)$ is analytic interior to and on a simple contour C than all the derivatives $f^{(h)}(z), k = 1, 2, \dots$ exist		So $f'(z)$ is entire and bounded, so it is constant by Liouville theorem. Let Theorem 16 (Weierstrass M Test), Let $ b_i(z) \leq M_i$ in a region
Therefore, domain D interior to C, and	$f(z) = \frac{1}{2m} \oint_C \left(\frac{f(\zeta)}{\zeta - z}\right) d\zeta - \frac{1}{\pi} \iint_R \left(\frac{\partial f(\partial_z^2)}{\zeta - z}\right) dA(\zeta)$	$ \begin{array}{l} f'(z) = A, \mbox{ then } f(z) = Az + B, \mbox{ where } A, B \mbox{ are constants. But, since } \\ f(z) \leq C z \mbox{ for all } z, \mbox{ taking } z \rightarrow 0, \mbox{ we get } B = 0. \mbox{ Thus, } f(z) = Az \mbox{ as } \\ \\ \sum_{j=1}^{\infty} b_j(z) \mbox{ converges uniformly in } \mathcal{R}. \end{array} $
$\mathcal{I} = \begin{cases} 0 & z = a \text{ outside } C \\ 0 & z = a \text{ inside } C, m \neq 1 \end{cases} \qquad \qquad$		claimed.
1 $z = a$ inside C , $m = 1$		2.19 Theoretical Developments Theorem 17 (Corollary: Ratio Test). Suppose b ₁ (z) is bounded, and
2.16 Example - Polynomials and Cauchy's Theorem 9. All partial derivatives of u and v are continuous	t any	Theorem 14 (Cauchy-Goursat). If a function $f(z)$ is analytic at all points interior to and on a simple closed contour, then $\left \frac{b_{j+1}(z)}{b_j(z)}\right \le M < 1, j > 1$
Let $P(z)$ be a polynomial of degree n , with n simple roots, none of which lie on a simple closed contour C . Evaluate		$\oint f(z) dz = 0$ for M constant. Then the series
$I = \frac{1}{2\pi i} \oint_C \frac{P'(z)}{P(z)} dz$ Theorem 10 (Lioville). If $f(z)$ is entire and bounded in the		$g_C f(z) dz = 0$ $S(z) = \sum_{j=0}^{\infty} b_j(z)$
Because $P(z)$ is a polynomial with distinct roots, we can factor it as (including infinity), then $f(z)$ is a constant.		3 Sequences Series and Singularities of
$P(z) = A(z - a_1)(z - a_2) \cdots (z - a_n)$ Where A is the coefficient of the term of highest degree. Because Theorem 11 (Maxim) If $f(z)$ is methanism in a degree D		Complex Functions
$\frac{P'(z)}{P'(z)} = \frac{d}{d} \log \left(\frac{d(z-a_1)(z-a_2)}{d(z-a_2)} + \frac{d}{d(z-a_2)} + \frac{d}{d(z-a$	dų –	3.1 Definitions of Complex Sequences, Series, and 3.2 Example - Convergence
$\frac{\overline{P(z)}}{P(z)} = \frac{1}{dz} \log P(z) \qquad = \frac{1}{dz} \log (A(z-a_1)(z-a_2)\cdots(z-a_n)) \qquad $		Their Basic Properties Show that the following series converges uniformly in the given region: We can denote a sequence of functions that converge to some given function $\sum_{n=1}^{\infty} z^n, 0 \leq z < R, R < 1$
$\frac{P'(z)}{P(z)} = \frac{1}{z - a_1} + \frac{1}{z - a_2} + \dots + \frac{1}{z - a_i}$ for every simple closed contour C lying in D, then f(z) is and D.	tic in	
Hence, using the same method as above, we have		$\lim_{u \to \infty} f_u(z) = f(z) \Leftrightarrow f_u(z) - f(z) < \epsilon \qquad \qquad$
$\mathcal{I} = \frac{1}{2\pi i} \oint_C \frac{P'(z)}{P(z)} dz = \text{number of roots lying within } C$		If the limit does not exist, or is infinite, the sequence is said to diverge i.e. the series is bounded above by a convergent numerical series, which for those values of z. means numerical convergence by the Weierstrass M-test.
7	8	9

3.3 Example - Radius of Convergence	Morever, it converges uniformly in $ z \leq R$ for $R < Z_* $.	Theorem 24. Let D_1 and D_2 be two disjoint domains, whose	Theorem 26 (Laurent Series). A function $f(z)$ analytic in an annulus
-	Theorem 19 (Taylor Series). Let $f(z)$ be analytic for $ z \le R$. Then	boundaries shore a common contour Γ . Let $f(z)$ be analytic in D_1 and continuous in $D_1 \cup \Gamma$ and $g(z)$ be analytic in D_2 and continuous in $D_2 \cup \Gamma$, and let $f(z) = g(z)$ on Γ . Then the function	$R_1 \le z - z_0 \le R_2$ may be represented by the expansion \propto
$\begin{aligned} z^{2n} &= (z^2)^n \\ \left \frac{a_n}{a_{n+1}} \right &= \left \frac{z^{2n}}{z^{2(n+1)}} \right = \frac{1}{ z ^2} \end{aligned}$	$f(z) = \sum_{j=1}^{\infty} b_j z^j$		$f(z) = \sum_{n=-\infty}^{\infty} C_n (z-z_0)^n$
Therefore it converges for $ z < 1$ and the radius of convergence is R = 1.	is where	$H(z) = \begin{cases} f(z) & z \in D_1 \\ f(z) = g(z) & z \in \Gamma \\ g(z) & z \in D_2 \end{cases}$	in the region $R_1 < R_a \le z - z_0 \le R_b < R_2$, where $1 - f_a = f(z)$
• n ⁿ z ⁿ	$b_i = \frac{f^{(j)}(0)}{1}$	is analytic in $D = D_1 \cup \Gamma \cup D_2$. We say that $g(z)$ is the analytic continuation of $f(z)$.	$C_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$
$\left \frac{a_n}{a_{n+1}}\right = \left \frac{n^n z^n}{(n+1)^{(n+1)} z^{n+1}}\right = \frac{1}{(n+1)(1+1/n)^n z } = 0$	j! converges uniformly in $ z \le R_1 < R$.	continuation of f(z).	and C is any simple closed contour in the region of analyticity enclosing the inner boundary $ z - z_0 = R_1$.
Therefore $R = 0$.	The largest number R for which the power series converges inside the disk		
3.4 Taylor Series A power series about the point $z = z_0$ is defined as	z < R is called the radius of convergence.	Theorem 25. If $f(z)$ is analytic and not identically zero in some domain D containing $z = z_0$, then its zeroes are isolated; that is, there is a neighborhood about $z = z_0$ $f(z_0) = 0$, which $f(z)$ is nonzero.	
for power series movies the point $z=z_0$ is defined as $f(z)=\sum^{\infty}b_j(z-z_0)^j$	Theorem 20. Let $f(z)$ be analytic for $ z \le R$. Then the series obtained by differentiating the Taylor series termwise converges uniformly to $f'(z)$	is a neighborhood arous $z = z_0$, $f(z_0) = 0$, in annei $f(z)$ is nonzero.	
<i>j</i> =0	$in z \le R_1 < R.$		
$f(z+z_0) = \sum_{j=0}^{\infty} b_j z^j$	Theorem 21. If the power series converges for $ z \le R$, then it can be differentiated termwise to obtain a uniformly convergent series for		
With b_j , z_0 are constants. WLOG ⁷ we can work with	is a uniformatical to make to obtain a uniformity concernent of points $ z \leq R_1 < R.$		
$f(z) = \sum_{j=0}^{\infty} b_j z^j$	Theorem 22 (Comparison Test). Let the series $\sum_{i=1}^{\infty} a_i z^i$ converse for		Theorem 27. The Laurent series defined above of a function $f(z)$ that
which is the $z_0 = 0$ case.	Theorem 22 (Comparison Test). Let the series $\sum_{j=0}^{\infty} a_j z^j$ converge for $ z < R$. If $ b_j \le a_j $ for $j \ge J$, then the series $\sum_{j=0}^{\infty} b_j z^j$ also converges for $ z < R$.		Theorem 21. The Lawrence error is explained above of a function $f(z)$ that is analytic in an annulus $R_1 \leq z - z_0 \leq R_2$ convergence $f(z)$ for $\rho_1 \leq z - z_0 \leq \rho_2$, where $R_1 < \rho_1$ and $R_2 > \rho_2$.
Theorem 18. If the series \sim			
$f(z) = \sum_{j=0}^{\infty} b_j z^j$	Theorem 23. Let each of two functions $f(z)$ and $g(z)$ be analytic in a common domain D. If $f(z)$ and $g(z)$ coincide in some subportion		Theorem 28. Suppose $f(z)$ is represented by a uniformly convergent series
converges for some $z_{*}\neq 0,$ then it converges for all z in $ z < Z_{*} .$	a common commun D . If $f(z)$ contract in some supportion $D' \subset D$ or on a curve Γ interior to D , then $f(z) = g(z)$ everywhere in D .		$f(z) = \sum_{n=-\infty}^{\infty} b_n (z - z_0)^n$
⁷ Without Loss Of Generality			
where $C_n = \begin{cases} -1 & n \leq -1 \\ \frac{1}{2^{n+1}} & n \geq 0 \end{cases}$	10We call this an Nth order pole if $N \ge 2$ and a simple pole if $N = 1$. The strength of the pole is $\phi(z_0)$. An isolated singular point that is neither removable nor a pole is called	so $z = 0$ is a removable simple pole. 110n the other hand, for $ u \le z < 1$, • $\operatorname{coth} z = \frac{\operatorname{coth} z}{\max z}$, the ratio of two entire functions, so all simple poles are $c^{z} (\infty)$ $c^{z} dz$.	This is a generic approach, however if $f(z)$ has a pole in the neighborhood ¹ of z_0 , then it's a lot easier. Define
(-	An isolated singular point that is neither removable nor a pole is called an essential singular point. These have "full" Laurent series expansions.	• Conv = $\frac{1}{uhr}$, we have out that interview of an imple point interview of a state of the	$f(z) = \frac{\phi(z)}{(z - z_0)^m}$
- Expand the function $f(z)=\frac{z}{(z-1)(z+2i)}\Rightarrow \frac{1/5-2i/5}{z-1}+\frac{4/5+2i/5}{z+2i}$	Theorem 29. If $f(z)$ has an essential singularity at $z = z_0$, then for any complex number w if (z) because arbitrarily close to w in a	$\operatorname{coth} z = \frac{\operatorname{coth} z}{\sinh z} = \frac{\operatorname{coth} (u + i\pi k)}{\sinh (u + i\pi k)} = \frac{(-1)^k \operatorname{coth} (u)}{(-1)^k \sinh (u)} = \frac{\operatorname{coth} (u)}{\sinh (u)} = \frac{1}{u} + \frac{u}{3}$ where a branch analytic inside $ z < 1$ is implied. Such a branch is the product of the prod	
$f(z) = \overline{(z-1)(z+2i)} \rightarrow \overline{(z-1)} + \overline{(z+2i)}$ in a Laurent series in the following regions.	for any complex number w, $f(z)$ becomes arbitrarily close to w in a neighborhood of z_0 . That is, given w, and any $\epsilon > 0$, $\delta > 0$, there is a z such that	so all points $z = i\pi k$ are simple poles with residue 1. Then the branch is analytic in $\mathbb{C} \setminus [1, +\infty)$, and, if one set specify the branch, then it is equal to the first series in $ z $ c	; 1. Then this by
- z < 1	$ f(z) - w < \epsilon$	3.11 Analytic Continuation branch is the analytic continuation of the series to the regio cut. This is the process of extending the range of validity for a given function	n C minus the $C_{-1} = \frac{1}{(m-1)!} \left(\frac{d^{m-1}}{d^{m-1}} \phi \right) (z = z_0)$ $= \frac{1}{(m-1)!} \frac{d^{m-1}}{d^{m-1}} ((z - z_0)^m f(z))(z = z_0)$
$f(z) = \frac{1/5 - 2i/5}{z - 1} + \frac{4/5 + 2i/5}{z + 2i}$ = $\left(\frac{2i - 1}{5}\right) \sum_{n=1}^{\infty} \left(1 - \left(\frac{i}{2}\right)^n\right) z^n$	whenever $0 < z - z_0 < \delta$.	into a larger domain. 4 Residue Calculus and Applica	tions of $= \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))(z=z_0)$
(· / n=0 ((-/ /	An entire function is one that is analytic everywhere on the complex plane. A meromorphic function is one that has only poles in the finite complex plane. A cluster point is an infinite sequence of isolated singular points that	Theorem 30. A function that is analytic in a domain D is uniquely determined either by values in some interior domain of D or along an	If it's the fraction of two rational functions, N and D, it can be as easy as $N(z_0)/D'(z_0)$. Sometimes we care about the residue at infinity.
-1 < z < 2 1/5 - 2i/5 $4/5 + 2i/5$	plane. A cluster point is an immite sequence or isolated singular points that cluster in a neighborhood. A boundary jump discontinuity is where two analytic functions separated by a contour do not equal each other at the	arc interior to D. 4.1 Cauchy Residue Theorem We've already discussed the Laurent expansion of f(z) to	be, for some $\operatorname{Res}(f(z); \infty) = \frac{1}{2\pi i} \oint_C f(z) dz$
$f(z) = \frac{1/5 - 2i/5}{z - 1} + \frac{4/5 + 2i/5}{z + 2i}$ = $\left(\frac{1 - 2i}{2}\right) \sum_{n=1}^{\infty} \frac{1}{z^{n+1}} + \left(\frac{1 - 2i}{5}\right) \sum_{n=1}^{\infty} \left(\frac{i}{2}\right)^n z^n$	contour.	Theorem 31 (Monodromy Theorem). Let D be a simply connected domain and $f(z)$ be analytic in some disk $D_0 \subseteq D$. If the function can isolated singular point,	with $z = z_0$ $= \frac{1}{2r_i} \oint_{-\pi} \left(\frac{1}{t^2} \right) f\left(\frac{1}{t} \right) dt$
n=0 (/ n=0 (/	3.10 Example - Singularities Discuss all singularities of the following functions		The value $w(z_j)$ is called the winding number of the curve C around the
- z > 2 $t(z) = \frac{1/5 - 2i/5}{4} + \frac{4/5 + 2i/5}{4}$	Discuss all singularities of the following functions. • $\frac{\pi}{2^{k+2}}$. It is a rational function, it only has simple poles at the roots of	$ \begin{aligned} & \text{for miniparality in } D, and during may two satisfies choosed containers c_1 due of c_1 and c_2 and c_3 and c_4 an$	point z_j . This value represents the number of times that C winds around z_j . Positive means counterclockwise.
$f(z) = \frac{1/5 - 2i/5}{z - 1} + \frac{4/5 + 2i/5}{z + 2i}$ = $\left(\frac{1 - 2i}{5}\right) \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \left(\frac{4/5 + 2i/5}{z}\right) \sum_{n=0}^{\infty} \frac{(-2i)^n}{z^n}$	$z^4 + 1 = 0$, $z = \{e^{i\pi/4}, e^{3i\pi/4}, e^{5i\pi/4}, e^{2i\pi/4}\}$ • $\frac{\sin z}{\pi^2}$. Function sin z is entire, so	Some functions can't be analytically continued due to a singularity referred to as a natural barrier. $C = -0$ where C is a simple closed contour in D. The negative par	t of the series $w(z_j) = \frac{1}{2\pi i} \oint_C \frac{dz}{z - z_j}$
	-	3.12 Example - Analytic Continuation is referred to as the principal part, while the coefficient C_{-} residue of $f(z)$ at z_0 , denoted $C_{-1} = \text{Res}(f(z); z_0)$.	t of the series $w(z_j) = \frac{1}{2\pi i} \oint_C \frac{dz}{z_{-z_j}}$ ₁ is called the $= \frac{1}{2\pi i} \log(z - z_j) _C$ $= \frac{\Delta \theta_j}{2\pi i}$
3.9 Singularities of Complex Functions An isolated singular point is a point where a given single-valued function is	$\frac{\sin z}{z^3} = \frac{z - z^3/3! - z^5/5! + \cdots}{z^3}$ is $= \frac{1}{z^2} - \frac{1}{6} + \frac{z^2}{120} + \cdots$	Discuss the analytic continuation of the following function. ∞	alytic inside 2π
not analytic, but analytic in the neighborhood surrounding the point. Removable singularities can be "removed" by using a Taylor or Laurent series expansion of the function.		$\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1} = \int_{0}^{z} \left(\sum_{n=0}^{\infty} u^{n} \right) du, z < 1$ $= 1$ $= 1$ $= 1$ $= 0$ $= 1$ $= 0$ $= 1$ $= 0$ $= 1$ $= 0$ $= 1$ $= 0$ $= 1$ $= 0$ $= $	tr of isolated 4.2 Example - Residues Evaluate the integral
An isolated singularity at z_0 of $f(z)$ is said to be a pole if $f(z)$ has the following representation.	e • $\frac{\cos z - 1}{z^2}$. The numerator is an entire function, so the only simple pole is $z = 0$.	The first series indeed converges only for $ z < 1$ where it defines an analytic function. For $ u \le z < 1$, the integrated series converges uniformly, so $\oint f(z) dz = 2\pi i \sum_{j=1}^{N} a_j$	Evaluate the integral $I = \frac{1}{2\pi i} \oint f(z) dz$
$f(z) = \frac{\phi(z)}{(z - z_0)^N}$	$\frac{\cos z - 1}{z^2} = \frac{1 - z^2/2! + z^4/4! - \dots - 1}{z^2} = -\frac{1}{2} + \frac{z^2}{24} + \dots$	$\int_{0}^{z} \left(\sum_{n=0}^{\infty} u^{n} \right) du = \sum_{n=0}^{\infty} \infty \int_{0}^{z} u^{n} du = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}$ where a_{j} is the residue of $f(z)$ at $z = z_{j}$, denoted by $a_{j} = 1$	241.30
	٦،	[] [4	Co-Function Identities
Theorem 33. Let $f(z) = N(z)/D(z)$ be a rational function such that the degree of $D(z)$ exceeds the degree of $N(z)$ by at least two. Then		Theorem 36. If on a circular arc C_R of radius R and center $z = 0$, $zf(z) \rightarrow 0$ uniformly as $R \rightarrow \infty$, then	$\sin(\frac{\pi}{2} - u) = \cos u \cos(\frac{\pi}{2} - u) = \sin u \tan(\frac{\pi}{2} - u) = \cot u$
$\lim_{R\to\infty} \int_{C_R} f(z) dz = 0$	T. I	$\lim_{R\to\infty}\int_{C_R}f(z)dz=0$	$csc(\frac{\pi}{2}-u) = scc u scc(\frac{\pi}{2}-u) = csc u cot(\frac{\pi}{2}-u) = tan u$
In other words, the integral converges.	Figure 4: Small circular arc C_e		Even-Odd Identities
Theorem 34 (Jordan's Lemma). Suppose that on the circular arc C_R	4 1	Theorem 37 (Argument Principle). Let $f(z)$ be a meromorphic	$\begin{aligned} \sin(-\mathbf{u}) &= -\sin\mathbf{u} \cos(-\mathbf{u}) = \cos\mathbf{u} \tan(-\mathbf{u}) = -\tan\mathbf{u} \\ \csc(-\mathbf{u}) &= -\csc\mathbf{u} \sec(-\mathbf{u}) = \sec\mathbf{u} \cot(-\mathbf{u}) = -\cot\mathbf{u} \end{aligned}$
we have $f(z) \rightarrow 0$ uniformly as $R \rightarrow \infty$. Then		function defined inside and on a simple closed contour C, with no zeros or poles on C. Then	
$\lim_{R\to\infty}\int_{C_R}e^{ikz}f(z)dz=0\qquad (k>0)$		$I = \frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = N - p = \frac{1}{2\pi} [\arg f(z)]_C$	
		$2\pi i I_C f(z) = 2\pi^2$ where N and P are the numbers of zeros and poles, respectively, of f(z) inside C: where a multiple zero or pole is counted according to	
	Theorem 35. I. Suppose that on the contour C_i we have $(z - z) = 0$	its multiplicity, and where $\arg f(z)$ is the argument of $f(z)$; that is, $f(z) = f(z) \exp(i \arg f(z))$ and $ \arg f(z) _{c}$ denotes the change in the	
	$z_0)f(z) \rightarrow 0$ uniformly as $\epsilon \rightarrow 0$. Then $\lim_{\epsilon \rightarrow 0} \int_C f(z) dz = 0$	$f(z) = f(z) \exp(\cos p(z))$ and $ \cos f(z) _{C}$ denotes the enables in the argument of $f(z)$ over C .	
		http://www.sosmath.com/trig/Trig5/trig5.html	Sum-Difference Formulas
	2. Suppose $f(z)$ has a simple pole at $z = z_0$ with residue $Res(f(z); z_0) = C_{-1}$. Then for the contour C_*	Theorem 38 (Rouché). Let $\int_{U_{z}}^{U_{z}} (z) dz dz$ and $g(z)$ be analytic on and inside	$\frac{\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v}{\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v}$
	$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) dz = i\phi C_{-1}$	$\begin{array}{l} a \ \text{simple closed contour } C. \ \ \ f(z)\ > \ g(z)\ \ \text{or } C, \ \ \text{then } f(z) \ \text{and} \\ \ f(z) + g(z)\ \ \text{have the same number of zeros inside the contour } C. \end{array} \\ \begin{array}{l} \sin u = \frac{1}{\sec u} \cos u = \frac{1}{\sec u} \tan u = \frac{1}{\cot u} \\ \end{array}$	$\frac{\cos(u \pm v) = \cos u \cos v + \sin u \sin v}{\tan u \pm \tan v}$ $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$
	where the integration is carried out in the positive (counterclockwise) sense.	$\csc u = \frac{1}{\sin u} \sec u = \frac{1}{\cos u} \cot u = \frac{1}{\tan u}$	
		Pythagorean identities	Double Angle Formulas $\sin(2u) = 2\sin u \cos u$
		$\sin^2 u + \cos^2 u = 1 1 + \tan^2 u = \sec^2 u 1 + \cot^2 u = \sec^2 u = 1 + \cot^2 u = 1$	$= 2 \cos^2 u - 1$
		Quotient identities $\tan u = \frac{\sin u}{\cos u} \cot u = \frac{\cos u}{\sin u}$	$= 1 - 2 \sin^2 u$ $\tan(2u) = \frac{2 \tan u}{1 - \tan^2 u}$
		$\tan u = \frac{\cos u}{\cos u} = \frac{\cos u}{\sin u}$	
	16	17	18

```
1 27. The Laurent series defined above of a function f(z) that c in an annulus R_1 \leq |z - z_0| \leq R_2 converges uniformly to p_1 \leq |z - z_0| \leq \rho_2, where R_1 < \rho_1 and R_2 > \rho_2.
  28. Suppose f(z) is represented by a uniformly convergent
                           f(z) = \sum_{n=-\infty}^{\infty} b_n (z - z_0)^n
f(z) = \frac{\phi(z)}{(z - z_0)^m}
                                                                                                                                                                \begin{split} I &= \operatorname{Res}(f; c = a) + \operatorname{Res}(f; a \exp(i\pi/3)) + \operatorname{Res}(f; a \exp(-i\pi/3) \\ &= \frac{-a + 1}{(-a - a e^{i\pi/3})(-a - a e^{-i\pi/3})} + \\ &= \frac{a e^{i\pi/3}}{(a e^{i\pi/3} + a)(a e^{i\pi/3} - a e^{-i\pi/3})} + \\ &= \frac{a e^{i\pi/3} + 1}{(a e^{i\pi/3} + a)(a e^{-i\pi/3} + 1)} \\ &= \frac{a e^{i\pi/3} + 1}{(a e^{i\pi/3} + a)(a e^{-i\pi/3} - a e^{i\pi/3})} \end{split}
is analytic in the neighborhood of z_0, m is a positive integer, and

b_i, f has a pole of order m. Then the residue of f(z) at z_0 is given
  \begin{split} C_{-1} &= \frac{1}{(m-1)!} \bigg( \frac{d^{m-1}}{dz^{m-1}} \phi \bigg) (z=z_0) \\ &= \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z)) (z=z_0) \end{split}
raction of two rational functions, N and D, it can be as easy as
s<sub>0</sub>). Sometimes we care about the residue at infinity.
```

```
4.3 Evaluation of Certain Definite Integrals
We can use complex integration to solve real integrals as well.
```

```
4.3.1 Infinite Endpoints
```

$$I = \frac{1}{2\pi i} \oint_C f(z)dz$$

- ction Identities $-u) = \cos u \quad \cos(\frac{\pi}{2} - u) = \sin u \quad \tan(\frac{\pi}{2} - u) = \cot u$
- Odd Identities

Sum-Difference Formulas

f(z) = sin(1/z). Since z = 0 is the only singular point of f(z), we do a Laurent series expansion about z = 0. Thus, Res(f; 0) = 1 and I = 1.

in the annulus $R_1 \leq |z - z_0| \leq R_2$. Then $b_n = C_n$, with C_n previously defined.

```
w(z_j) is called the winding number of the curve C around the
fis value represents the number of times that C winds around
For integrals of the form
means counterclockwise.
```

18

```
I = \int_{-\infty}^{\infty} f(x) dx
where f(x) is real valued. These integrals converge if the following two limits exist.
```

 $I = \lim_{L \to \infty} \int_{-L}^{\alpha} f(x) dx + \lim_{R \to \infty} \int_{\alpha}^{R} f(x) dx \quad \alpha \text{ finite}$ To evaluate this integral, we can take C to be a large semicircle that encloses all singularities of f(z). Using this, we have

 $\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{i=1}^{N} \operatorname{Res}(f(z); z_j)$ Power-Reducing/Half Angle Formulas $\sin^2 u = \frac{1 - \cos(2u)}{2}$ $\cos^2 u = \frac{1 + \cos(2u)}{2}$

```
\tan^2 u = \frac{1 - \cos(2u)}{1 + \cos(2u)}
 Sum-to-Product Formulas
\sin u + \sin v = 2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
\sin u - \sin v = 2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
\cos u + \cos v = 2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
\cos u - \cos v = -2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
```

Product-to-Sum Formulas $\sin u \sin v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v) \right]$ $\cos u \cos v = \frac{1}{2} \left[\cos(u-v) + \cos(u+v) \right]$

 $\sin u \cos v = \frac{1}{2} \left[\sin(u+v) + \sin(u-v) \right]$

 $\cos u \sin v = \frac{1}{2} \left[\sin(u+v) - \sin(u-v) \right]$