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1 Complex Numbers and Elementary Functions
1.1 Properties
We define an imaginary number as

i2 = −1

While a complex number is defined as

z = x+ iy

The common functions ℜ and ℑ yield the real and imaginary parts of a complex number
respectively.1 We can also express complex numbers in polar coordinates.

x = r cos θ

y = r sin θ

Using Euler’s Identity,

cos θ + i sin θ = eiθ

the alternate form is defined as

z = x+ iy = r (cos θ + i sin θ) = reiθ

r =
√
x2 + y2 = |z|

tan θ =
y

x

The complex conjugate is defined as

x− iy ≡ re−iθ

We can define some common equivalences.
• exp (2πi) = 1

• exp (πi) = −1

• exp
(
πi
2

)
= i

• exp
(
3πi
2

)
= −i

• exp (iθ1) exp (iθ2) = exp (i (θ1 + θ2))

• exp (iθ)
m

= exp (imθ)

• exp (iθ)
1/n

= exp
(
iθ
n

)
Another neat trick is to let z = 1/t to analyze behavior at ∞.

1Also denoted as Re and Im
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1.2 Stereographic Projection
We can visualize complex numbers with a stereographic projection. Zero is located at the
North Pole, and infinity at the South Pole.

Figure 1: Stereographic Projection

These points are

X =
4x

|z|2 + 4
Y =

4y

|z|2 + 4
Z =

2 |z|2

|z|2 + 4

1.3 Elementary Functions
Similar to Real Analysis, we can define a neighborhood of some point z as the region enclosed
by

|z − z0| < ϵ

As with sets, these can be closed, bounded, regions, domains, etc. . . .
We can also define functions of complex numbers, and as with real valued numbers, they

mostly work the same. The simplest function is the power function.

f(z) = zn

Which can be extended to define Polynomials and rational functions (as the result of dividing
a polynomial function with another).

Limits also work the same, even with Radii of Convergence, etc.
Projections and Mappings work intuitively.

1.4 Example - Rootfinding
Solve for all roots of the following equation: z4 + 2z = 0.

z
(
z3 + 2

)
= 0, so z = 0 or z3 = −2, and then r3 = 2, e3iθ = eiπ ⇒ θ = π/3 + 2πn/3,

n = 0, 1, 2. Thus, the roots are

z = 0, 21/3eiπ/3, 21/3eiπ = −21/3, 21/3e5iπ/3

1.5 Limits
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Theorem 1 (ϵ− δ Limit Definition). A complex limit can be defined as

lim
z→z0

f(z) = w0

if for every sufficiently small ϵ > 0, there is a δ > 0 such that

|f(z)− w0| < ϵ |z − z0| < δ

This is the traditional ϵ− δ format that we’re used to from real analysis.

Similarly, a function is said to be continuous if for all z,

lim
z→z0

f(z) = z0

The traditional definitions of Uniform and Absolute convergence also apply.
Using these limit definitions we can define the concept of a derivative.

f ′(z0) = lim
∆z→0

(
f(z0 +∆z)− f(z0)

∆z

)
= lim

z→z0

(
f(z)− f(z0)

z − z0

)

1.6 Visualization
Is tricky. Wrote some code to rotate a complex function with static output supported.
The hard part is you basically have a four-dimensional surface, since you have two input
variables, the real and imaginary parts, and two output variables, the real and imaginary
parts. The most straightforward way to visualize is to graph the output real and imaginary
parts separately.

Figure 2: Visualization of f(z) = z3
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2 Analytic Functions and Integration
2.1 Analytic Functions
In order for a complex function to be differentiable, it has to satisfy the Cauchy-Riemann
Conditions.

Theorem 2 (Cauchy-Riemann Conditions). By writing the real and imaginary parts
separately in the definition of a derivative, we get

f(z) = u(x, y) + iv(x, y)

f ′(z) = lim
∆x→0

(
u(x+∆x, y)− u(x, y)

∆x
+ i

v(x+∆x, y)− v(x, y)

∆x

)
= ux(x, y) + ivx(x, y)

Yielding the Cauchy-Riemann conditions,

ux = vy vx = −uy

ur =
vθ
r

vr = −uθ
r

Theorem 3. The function f(z) = u(x, y)+iv(x, y) is differentiable at a point z = x+iy
of a region in the complex plane if and only if the partial derivatives ux, uy, vx, vy, are
continuous and satisfy the Cauchy-Riemann conditions at z = x+ iy.

For differentiability, we can use the term analyticity to mean the same thing, both for
pointwise differentiability and differentiability over a region. Points that are not differentiable
(analytic) are called singular points.2

Some properties follow.3
• Sums, Products, and Compositions of analytic functions are analytic.
• The reciprocal of an analytic function that is nowhere zero is analytic, as is the inverse

of an invertible analytic function whose derivative is nowhere zero.
An entire function is one that’s analytic on the entire finite plane.
Taking the second derivative of the Cauchy-Riemann conditions yields Laplace’s Equation.

uxx = vxy vyx = −uyy

∇2w = 0 ⇒

{
∇2u ≡ uxx + uyy = 0

∇2v ≡ vxx + vyy = 0

A function that satisfies the concise Laplace Equation: ∇2w = 0 is called a harmonic
function in D. u and v are referred to as harmonic functions in D, and they are harmonic
conjugates of each other.

2Holomorphic is sometimes used as well (or instead) of analytic.
3https://en.wikipedia.org/wiki/Analytic_function#Properties_of_analytic_functions
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2.2 Example - Cauchy-Riemann Conditions
Let f(z) = ez = ex+iy = exeiy = ex(cos y + i sin y). Verify Cauchy-Riemann for all x, y,
and then show that f ′(z) = ez.

u = ex cos y v = ex sin y

ux = ex cos y = vy

vy = −ex sin y = −vx
f ′(z) = ux + ivx = ex(cos y + i sin y) = ez

2.3 Ideal Fluid Flow - Application of Laplace’s Equation
Two dimensional ideal fluid flow is a great example of Laplace’s Equation. This is fluid that
is time independent, nonviscous, incompressible, and irrotational.

1. Incompressibility:

v1,x + v2,y = 0

Where v1 and v2 are the horizontal and vertical components.
2. Irrotationality:

v2,x − v1,y = 0

3. Simplified:

v1 = ϕx = ψy v2 = ϕy = −ψx

v = ∇ϕ

ϕ is the velocity potential, and ψ the stream function. Cauchy-Riemann is satisfied
for ϕ and ψ, therefore we have a complex velocity potential.

Ω(z) = ϕ(x, y) + iψ(x, y)

Ω′(z) = ϕx + iψx = ϕx − iψy = v1 − v2

2.4 Example - Uniform Flow
Uniform Flow is

Ω(z) = v0e
−iθ0z = v0(cos θ0 − i sin θ0)(x+ iy)

where v0 and θ0 are positive real constants. The corresponding velocity potential and
velocity field is given by

ϕ(x, y) = v0(cos (θ0x) + sin (θ0y))

v1 = ϕx = v0 cos θ0 v2 = ϕy = v0 sin θ0

which is identified with uniform flow making an angle θ0 with the x axis. Alternatively, the
steam function ψ(x, y) = v0(cos (θ0y)− sin (θ0x)) = const. reveals the same flow field.
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2.5 Multivalued Functions
A simple example of this is the square root function which takes on different values for n
even or odd.

z = w2 w =
√
z

= r1/2eiθp/2enπi

We can define these “points” where complex functions take on multiple values as branch
points. In the same way that they’re referred to as branch points, branches of a multivalued
function are when we restrict to only one set of continuous values. A branch cut is this
restriction process.4

Log is more complicated, and we define it as such.

w = log(z) = log r + iθp + 2nπi, n = 0,±1,±2, . . . , 0 ≤ θp < 2π

2.6 Example - Branch Points/Cuts
Find the location of the branch points and discuss possible branch cuts for the following
functions:

1. (z − i)
1/3

Let z − i = ϵeiθp which is a circular contour centered at z = i. We have just a power
function in terms of ζ = z − i, so z = i and z = ∞ are branch points. Any line
connecting z = ∞ and z = i is a branch cut, e.g. {z = iy|y ∈ [1,+∞)} is as good as
any. There are 3 distinct branches.

2. log
(

1
z−2

)
log
(

1
z−2

)
= − log (z − 2). Again, this is − log(z) but with shiftd origin. So the branch

points are z = 2 and z = ∞. A branch cut must connect the branch points, it can be
{z = x|x ∈ [2,+∞)} or {z = x|x ∈ (−∞, 2]}.

2.7 Example - Rootfinding (cont.)
Solve for all values of z: 4 + 2ez+i = 2.

4 + 2ez+i = 2 ⇒ ez+i = −1 = eiπ+2πin, n ∈ Z

Therefore

z + i = iπ + 2πin⇒ z = i(π − 1 + 2πn), n ∈ Z

2.8 Example - Branch Points/Cuts (cont.)
Find the location of the branch points and discuss a branch cut structure associated with
the function:

• f(z) = z−1
z

This is a rational function singular at z = 0, but single-valued, so no branch points.
4The real analogy here is a function like ±

√
x, x ∈ R. 0 is a branch point, and we often times just examine

the branch where
√
x > 0. The analogous branch cut is x > 0.
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• f(z) = log
(
z2 − 3

)
Here z2 − 3 is entire single-valued function so the only branch points are those where
z2 − 3 = 0 or z2 − 3 = ∞. Thus, there are three branch points, z = ±

√
3, and

z = ∞. A branch cut must make sure there is no possibility going around and single
of them, in this case it must connect all three points. E.g. consider a cut on real axis
{z = x|x ∈ [−3,+∞)}.

• f(z) = exp
√
z2 − 1

Since function ez is entire (analytic on plane) the only possible branch points are those
of

√
z2 − 1, i.e. z = ±1 and z = ∞. However, doing the circle argument z−1 = r1e

iθ1 ,
z + 1 = r2e

iθ2 , θ1 → θ1 + 2π, θ2 → θ2 + 2π, one sees that z = ∞ is not a branch
point since exp (2πi+ 2πi)/2 = 1 which corresponds to encircling both z = 1 and
z = −1, equivalent to encircling just z = ∞. Thus, z = ∞ is not a branch point even
for

√
z2 − 1. But z = ±1 are branch points, and a branch cut connecting them is

{z = x|x ∈ [−1, 1]}.

2.9 More Complicated Multivalued Functions and Riemann Surfaces
If we have functions like the following

w = [(z − a)(z − b)]
1/2

We need to use a slightly more complicated branch cut/structure. We know that the points
z = a, b are both branch points (by letting z = a + ϵ1e

iθ1 and as θ1 varies from 0 to 2π, w
jumps from q1/2 to −q1/2), and so we can define a branch cut as follows.

z − b = r1e
iθ1

z − a = r2e
iθ2 0 ≤ θ1, θ2 < 2π

Our equation now becomes

w = (r1r2)
1/2
ei(θ1+θ2)/2

This process extends to more complicated functions, as for any w of the form

w = [(z − x1)(z − x2) · · · (z − xn)]
m

we can define our branch cuts to be

z − xk = rke
iθk

yielding

w = (r1r2 · · · rn)emi(θ1+θ2+···+θn)

2.10 Example - Branch Points/Cuts (cont.)
Find the location of branch points and discuss a branch cut structure associated with the
function:

f(z) = coth−1 z

a
=

1

2
log

(
z + a

z − a

)
, a > 0

Complex Variables 9 Mark Ablowitz
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This is (up to a constant) log of rational function, so the branch points are those where
(z + a)/(z − a) = 0 or ∞, i.e. z = ±a. As for z = ∞, it is not a branch point, as the limit
equals 1, not zero. A cut must connect the two points, so a possible one is interval [−a, a]
on the real axis.

2.11 Riemann Surfaces
Instead of considering the normal complex plane with arbitrary “cuts”, it can be useful
to instead consider a surface with multiple “sheets”. Any multivalued function only has
one point that corresponds to each point on the sheet. This way, for any given sheet, the
function is single-valued.

For the function w1/2, since we have two branches, our Riemann surface is two-sheeted.
For the log function, since it is infinitely multivalued, we have infinite sheets.

Figure 3: Riemann Surface for log(z)

2.12 Complex Integration
Consider a function f(t) = u(t) + iv(t). This function is integrable if u and v are integrable
(with the same properties applying).

ˆ b

a

f(t) dt =

ˆ b

a

u(t) dt+ i

ˆ b

a

v(t) dt

Complex Variables 10 Mark Ablowitz
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Defining a curve on the complex plane can be done parametrically, with form5

z(t) = x(t) + iy(t)

The path (contour) integral of function f on contour z is defined to be6

ˆ
C

f(z) dz =

ˆ b

a

f(z(t))z′(t) dt

This is really a line integral in the (x, y) plane.

Theorem 4. Suppose F (z) is an analytic function and that f(z) = F ′(z) is continuous
in a domain D. Then for a contour C lying in D with endpoints z1 and z2

ˆ
C

f(z) dz = F (z2)− F (z1)

Since we can think of the parameterized complex plane as a vector field, for closed
curves, we have

˛
C

f(z) dz =

˛
C

F ′(z) dz = 0

Note that everything here hinges on the analyticity of F and the continuity in domain
D.

Theorem 5. Let f(z) be continuous on a contour C. Then∣∣∣∣ˆ
C

f(z) dz

∣∣∣∣ ≤ML

where L is the length of C and M is an upper bound for |f | on C.
Arc length can be defined (from Calc III) for a parameterized curve with form z(t) =

u(t) + iv(t) as
ˆ b

a

√
(u′(t))

2
+ (v′(t))

2
dt

Hey, this is nice and easy! If the given function is analytic on and in its domain, then it
just equals zero! If there is a singularity on the inside of the domain, deform the contour so
that you have 2 curves of opposite direction. Then C1 = C2, and you can just solve for the
one that surrounds the singularity.

5These curves are
• Simple Curve or Jordan Arc if it does not intersect itself.
• Simple Closed Curve or Jordan Curve if the endpoints meet.

6Contours are defined as piecewise smooth connected arcs. Simple closed is referred to as a Jordan
Contour
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2.13 Example - Contour Integration
Evaluate

´
C
z dz for a contour from z = 0 to z = 1 to z = 1 + i.

ˆ
C

z dz =

ˆ
C

(x− iy)(dx+ i dy)

=

ˆ 1

x=0

x dx+

ˆ 1

y=0

(1− iy)(i dy)

=
1

2
+ i
[
y − iy2/2

]1
0

= 1 + i

2.14 Cauchy’s Theorem

Theorem 6 (Cauchy). If a function f is analytic in a simply connected domain D,
then along a simple closed contour C in D

˛
C

f(z) dz = 0

We also require that f ′(z) is also continuous in D.
“If f(z) is analytic everwhere interior to and on a simple closed contour C, then¸

C
f(z) dz = 0.”
Again, NOTE that everything hinges on the fact that D must be simply connected.

In order to use this, you need a simply connected domain D AND a simple closed
contour C.

To best apply Cauchy’s Theorem, we can use tricks like turning a complex contour into
several simple contours, and deforming a simply connected domain so that the function is
analytic on the domain.

2.15 Example - Cauchy’s Theorem
Evaluate

I =
1

2πi

˛
C

1

(z − a)
m dz, m = 1, 2, . . . ,M

where C is a simple closed contour.
The function f(z) = 1/(z − a)

m is analytic for all z ̸= a. Hence if C does not enclose
z = a, then we have I = 0. If C encloses z = a, we use Cauchy’s Theorem to deform the
contour to Ca, a small, but finite circle of radius r centered at z = a. Namely,

ˆ
C

f(z) dz −
ˆ
Ca

f(z) dz = 0, f(z) = 1/(z − a)
m

We evaluate
´
Ca
f(z) dz by letting

z − a = reiθ, dz = ieiθrdθ

Complex Variables 12 Mark Ablowitz
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in which case

I =
1

2πi

˛
C

1

(z − a)
m dz =

1

2πi

ˆ 2π

0

1

rmeimθ
ieiθr dθ

=
1

2πi

ˆ 2π

0

ie−i(m−1)θr−m+1 dθ = δm,1 =

{
1 m = 1

0 else

Therefore,

I =


0 z = a outside C
0 z = a inside C, m ≠ 1

1 z = a inside C, m = 1

2.16 Example - Polynomials and Cauchy’s Theorem
Let P (z) be a polynomial of degree n, with n simple roots, none of which lie on a simple
clsoed contour C. Evaluate

I =
1

2πi

˛
C

P ′(z)

P (z)
dz

Because P (z) is apolynomial with distinct roots, we can factor it as

P (z) = A(z − a1)(z − a2) · · · (z − an)

Where A is the coefficient of the term of highest degree. Because

P ′(z)

P (z)
=

d

dz
(logP (z)) =

d

dz
log (A(z − a1)(z − a2) · · · (z − an))

it follows that

P ′(z)

P (z)
=

1

z − a1
+

1

z − a2
+ · · ·+ 1

z − a1

Hence, using the same method as above, we have

I =
1

2πi

˛
C

P ′(z)

P (z)
dz = number of roots lying within C

2.17 Cauchy’s Integral Formula, Its ∂ Generalization and Consequences

Theorem 7. Let f(z) be analytic interior to and on a simple closed contour C. Then
at any interior point z

f(z) =
1

2πi

˛
C

f(ζ)

ζ − z
dζ

This is referred to as Cauchy’s Integral Formula.

Complex Variables 13 Mark Ablowitz
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Theorem 8. If f(z) is analytic interior to and on a simple closed contour C then all
the derivatives f (k)(z), k = 1, 2, . . . exist in the domain D interior to C, and

f (k)(z) =
k!

2πi

˛
C

f(ζ)

(ζ − z)
k+1

dζ

Theorem 9. All partial derivatives of u and v are continuous at any point where
f = u+ iv is analytic.

Theorem 10 (Lioville). If f(z) is entire and bounded in the z plane (including infinity),
then f(z) is a constant.

Theorem 11 (Morera). If f(z) is continuous in a domain D and if
˛
C

f(z) dz = 0

for every simple closed contour C lying in D, then f(z) is analytic in D.

Theorem 12 (Maximum Principles). 1. If f(z) is analytic in a domain D, then
|f(z)| cannot have a maximum in D unless f(z) is a constant.

2. If f(z) is analytic in a bounded region D and |f(z)| is continuous in the closed
region D, then |f(z)| assumes its maximum on the boundary of the region.

Theorem 13 (Generalized Cauchy Formula). If ∂f/∂ζ exists and is continuous in a
region R bounded by a simple closed contour C, then at any interior point z

f(z) =
1

2πi

˛
C

(
f(ζ)

ζ − z

)
dζ − 1

π

¨
R

(
∂f/∂ζ

ζ − z

)
dA(ζ)

2.18 Example - Cauchy’s Theorem
Evaluate the integral

¸
C
f(z) dz where C is the unit circle enclosing the origin and f(z) is

given by
• log(z − z0), z0 > 1

Consider an analytic branch of log (z − z0) such that branch cut joining z0 and ∞
does not cross the unit circle centered at z = 0. Then log (z − z0) is analytic inside
C and, by Cauchy’s Theorem,

¸
C
log (z − z0) dz = 0.
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• z/
(
z2 + a2

)
, |a| < 1

z

z2 + a2
=

1

2(z − ia)
+

1

2(z + ia)

z = ±ia are the singularities of f(z) inside the contour. For each summand we find
˛
C

1

2(z − ia)
dz = πi

˛
C

1

2(z + ia)
dz = πi

so
¸
C
f(z)dz = πi+ πi = 2πi.

Evaluate the integral
˛
C

(
2eiz

z
+

1

z − π

)
dz

Where C is
• A boundary of the annulus between circles of radius 1 and radius 4 with centers at

the origin
Use

˛
C

(
2eiz

z
+

1

z − π

)
dz =

˛
C

2eiz

z
dz +

˛
C

1

z − π
dz = I1 + I2

and compute I1 and I2 separately. For I1, the integrated function is analytic everywhere
except z = 0 which is outside the annulus. Cutting the annulus and using Cauchy
theorem for the cut annulus we find that I1 = 0. Since 1 < π < 4, the point z = π is
inside the annulus and we find

I2 =

˛
C

1

z − π
dz =

˛
|z|=1

1

z − π
dz +

˛
|z|=4

1

z − π
dz = 0 + 2πi = 2πi

Where we used Cauchy theorem for the first integral and deformation of the contour
to a small circle with center z = π for the second. Thus we obtain I1 + I2 = 2πi.

• A circle of radius R, R > 5, with center at the origin.
Here, since π < 5, we obtain I2 = 2πi like for the annulus above. As for I1, we expand
eiz in the Taylor series (converging for all z) and find

I1 =

˛
C

2eiz

z
dz =

˛
|z|=R

2

z

(
1 + iz +

(iz)
2

2
+ · · ·

)
dz =

˛
|z|=R

(
2

z
+ 2i− z + · · ·

)
dz = 4πi+ 0 = 4πi

where only the first term gives non-zero contribution. Thus I1 + I2 = 6πi.
Evaluate the integral

¸
C
f(z)dz where C is the unit circle centered at the origin for the

following f(z).
The only singular point in both is z = 0. We will expand the numerators in Taylor series

around zero and use the integration of powers formula.
•

ez
2

z
=

1

z

∞∑
n=0

z2n

n!
=

∞∑
k=−1

z2k+1

(k + 1)!
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power z−1 corresponds to k = −1, thus
¸
C
f(z) dz = 2πi.

•

sin z

z4
=

1

z3
− 1

6z
+

z

120
+ · · ·

so
¸
C
f(z) dz = −2πi/6 = −iπ/3.

Let f(z) be an entire function with |f(z)| ≤ C |z| for all z, where C is a constant. Show
that f(z) = Az, where A is a constant.

Using the generalized Cauchy formula,

f ′(z) =
1

2πi

˛
C

f(ζ)

(ζ − z)
2 dζ

where C = {|ζ − z| = R} is the circle of radius R around z in the ζ-plane. Then

|f ′| ≤ 1

2π

˛
C

|f(ζ)|
|ζ − z|2

|dζ| ≤ 1

2π

ˆ 2π

0

C(|z|+R)

R2
Rdθ = C(1 + |z| /R) = C

So f ′(z) is entire and bounded, so it is constant by Liouville theorem. Let f ′(z) = A, then
f(z) = Az+B, where A,B are constants. But, since |f(z)| ≤ C |z| for all z, taking |z| → 0,
we get B = 0. Thus, f(z) = Az as claimed.

2.19 Theoretical Developments

Theorem 14 (Cauchy-Goursat). If a function f(z) is analytic at all points interior
to and on a simple closed contour, then

˛
C

f(z) dz = 0

3 Sequences, Series, and Singularities of Complex Functions
3.1 Definitions of Complex Sequences, Series, and Their Basic Properties
We can denote a sequence of functions that converge to some given function as

lim
n→∞

fn(z) = f(z) ⇔ |fn(z)− f(z)| < ϵ

If the limit does not exist, or is infinite, the sequence is said to diverge for those values
of z.

We say the sequence of functions converges uniformly if we can choose N on only ϵ, and
not z. In other words, if for any z, the nth function is ϵ close to f(z).

Theorem 15. Let the sequence of functions fn(z) be continuous for each integer n and
let fn(z) converge to f(z) uniformly in a region R. Then f(z) is continuous, and for
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any finite contour C inside R

lim
n→∞

ˆ
C

fn(z) dz =

ˆ
C

f(z) dz

Theorem 16 (Weierstrass M Test). Let |bj(z)| ≤Mj in a region R, with Mj constant.
If
∑∞

j=1Mj converges, then the series S(z) =
∑∞

j=1 bj(z) converges uniformly in R.

Theorem 17 (Corollary: Ratio Test). Suppose |b1(z)| is bounded, and∣∣∣∣bj+1(z)

bj(z)

∣∣∣∣ ≤M < 1, j > 1

for M constant. Then the series

S(z) =

∞∑
j=1

bj(z)

is uniformly convergent.

3.2 Example - Convergence
Show that the following series converges uniformly in the given region:

∑∞
n=1 z

n, 0 ≤ |z| <
R,R < 1 ∣∣∣∣∣

∞∑
n=1

zn

∣∣∣∣∣ ≤
∞∑

n=1

|z|n ≤
∞∑

n=1

Rn =
R

1−R

i.e. the series is bounded above by a convergent numerical series, which means numerical
convergence by the Weierstrass M-test.

3.3 Example - Radius of Convergence
• z2n

z2n =
(
z2
)n∣∣∣∣ anan+1

∣∣∣∣ = ∣∣∣∣ z2n

z2(n+1)

∣∣∣∣ = 1

|z|2

Therefore it converges for |z| < 1 and the radius of convergence is R = 1.
• nnzn ∣∣∣∣ anan+1

∣∣∣∣ =
∣∣∣∣∣ nnzn

(n+ 1)
(n+1)

zn+1

∣∣∣∣∣ = 1

(n+ 1)(1 + 1/n)
n |z|

= 0

Therefore R = 0.
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3.4 Taylor Series
A power series about the point z = z0 is defined as

f(z) =

∞∑
j=0

bj(z − z0)
j

f(z + z0) =

∞∑
j=0

bjz
j

With bj , z0 are constants. WLOG7 we can work with

f(z) =

∞∑
j=0

bjz
j

which is the z0 = 0 case.

Theorem 18. If the series

f(z) =

∞∑
j=0

bjz
j

converges for some z∗ ̸= 0, then it converges for all z in |z| < |Z∗|. Morever, it
converges uniformly in |z| ≤ R for R < |Z∗|.

Theorem 19 (Taylor Series). Let f(z) be analytic for |z| ≤ R. Then

f(z) =

∞∑
j=0

bjz
j

where

bj =
f (j)(0)

j!

converges uniformly in |z| ≤ R1 < R.

The largest number R for which the power series converges inside the disk |z| < R is
called the radius of convergence.

Theorem 20. Let f(z) be analytic for |z| ≤ R. Then the series obtained by differentiating
the Taylor series termwise converges uniformly to f ′(z) in |z| ≤ R1 < R.

7Without Loss Of Generality
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Theorem 21. If the power series converges for |z| ≤ R, then it can be differentiated
termwise to obtain a uniformly convergent series for |z| ≤ R1 < R.

Theorem 22 (Comparison Test). Let the series
∑∞

j=0 ajz
j converge for |z| < R. If

|bj | ≤ |aj | for j ≥ J , then the series
∑∞

j=0 bjz
j also converges for |z| < R.

Theorem 23. Let each of two functions f(z) and g(z) be analytic in a common domain
D. If f(z) and g(z) coincide in some subportion D′ ⊂ D or on a curve Γ interior to
D, then f(z) = g(z) everywhere in D.

Theorem 24. Let D1 and D2 be two disjoint domains, whose boundaries share a
common contour Γ. Let f(z) be analytic in D1 and continuous in D1 ∪ Γ and g(z) be
analytic in D2 and continuous in D2 ∪ Γ, and let f(z) = g(z) on Γ. Then the function

H(z) =


f(z) z ∈ D1

f(z) = g(z) z ∈ Γ

g(z) z ∈ D2

is analytic in D = D1 ∪ Γ ∪D2. We say that g(z) is the analytic continuation of f(z).

Theorem 25. If f(z) is analytic and not identically zero in some domain D containing
z = z0, then its zeroes are isolated; that is, there is a neighborhood about z = z0,
f(z0) = 0, in which f(z) is nonzero.

3.5 Common Taylor Series Expansions
• Geometric

1

1− z
=

∞∑
n=0

zn
1

(1− z)
2 =

∞∑
n=1

nzn−1 z

(1− z)
2 =

∞∑
n=0

nzn |z| < 1

• Binomial

(1 + z)
α
=

∞∑
n=0

(
α

n

)
xn |z| < 1

• Exponential

ez =

∞∑
n=0

zn

n!
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• Trigonometric

sin(z) =

∞∑
n=0

(−1)
n z2n+1

(2n+ 1)!
cos(z) =

∞∑
n=0

(−1)
n z2n

(2n)!

sinh(z) =

∞∑
n=0

z2n+1

(2n+ 1)!
cosh(z) =

∞∑
n=0

z2n

(2n)!

arctan z =

∞∑
n=0

(−1)
n z

2n+1

2n+ 1

• Logarithmic

ln 1− z = −
∞∑

n=1

zn

n
ln (1 + z) =

∞∑
n=0

(−1)
n+1 z

n

n
|z| < 1

3.6 Example - Taylor Series Expansions
•

z

1 + z2
, |z| < 1

z

1 + z2
= z

∞∑
n=0

(
−z2

)n
=

∞∑
n=0

(−1)
n
z2n+1

•
sin z

z
, 0 < |z| <∞

sin z

z
=

1

z

∞∑
n=0

(−1)
n
z2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)
n
z2n

(2n+ 1)!

• Use the Taylor Series representation of (1− z)
−1 around z = 0 for |z| < 1 to find a

series representation of 1/(1− z) for |z| > 1.
⇒The Taylor series for (1− z)

−1 is just the geometric series and we know that it
converges in |z| < 1. For |z| > 1, 1/ |z| < 1, so we have

1

1− z
= − 1

z(1− 1/z)
⇒ −1

z

∞∑
n=0

1

zn
⇒ −

∞∑
n=0

1

zn+1

3.7 Laurent Series

Theorem 26 (Laurent Series). A function f(z) analytic in an annulus R1 ≤ |z − z0| ≤
R2 may be represented by the expansion

f(z) =

∞∑
n=−∞

Cn(z − z0)
n
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in the region R1 < Ra ≤ |z − z0| ≤ Rb < R2, where

Cn =
1

2πi

˛
C

f(z)

(z − z0)
n+1 dz

and C is any simple closed contour in the region of analyticity enclosing the inner
boundary |z − z0| = R1.

We note two important cases here.
1. Suppose f(z) is analytic everywhere inside the circle |z − z0| = R1. Then by Cauchy’s

Theorem, Cn = 0 for n ≤ −1 because the integrand is analytic. In this case, our
Laurent series reduces to the Taylor Series

f(z) =

∞∑
n=0

Cn(z − z0)
n

with Cn defined above.
2. Suppose however, that f(z) is analytic everywhere outside the circle. Then Cn = 0

for n ≥ 1, and f(z) has form

f(z) =

0∑
n=−∞

Cn

(z − z0)
n

Theorem 27. The Laurent series defined above of a function f(z) that is analytic in
an annulus R1 ≤ |z − z0| ≤ R2 converges uniformly to f(z) for ρ1 ≤ |z − z0| ≤ ρ2,
where R1 < ρ1 and R2 > ρ2.

Theorem 28. Suppose f(z) is represented by a uniformly convergent series

f(z) =

∞∑
n=−∞

bn(z − z0)
n

in the annulus R1 ≤ |z − z0| ≤ R2. Then bn = Cn, with Cn previously defined.

In essence this is straightforward. We essentially convert the function to a taylor series
representation (hopefully geometric) and simplify.

3.8 Example - Laurent Expansions
• Find the Laurent expansion of f(z) = 1/(1 + z) for |z| > 1.

The Taylor series expansion of (1− z)
−1 is the geometric series. We can write f(z)

in the form of a geometric series.

1

1 + z
=

1

z
(
1 + 1

z

)
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And use the geometric series form to obtain

1

1 + z
=

1

z

∞∑
n=0

(−1)
n

zn
=

∞∑
n=0

(−1)
n

zn+1

• Find the Laurent Expansion of f(z) = 1/((z − 1)(z − 2)) for 1 < |z| < 2.
We use Partial Fraction Decompositionn to rewrite f(z) as

f(z) = − 1

z − 1
+

1

z − 2

And rewrite in geometric series form

f(z) = −1

z

(
1

1− 1/z

)
− 1

2

(
1

1− z/2

)
Because 1 < |z| < 2, |1/z| < 1, and |z/2| < 1 we can use the geometric forms and
obtain

f(z) = −1

z

∞∑
n=0

1

zn
− 1

2

∞∑
n=0

(z
2

)n
Therefore

f(z) =

∞∑
n=−∞

Cnz
n

where

Cn =

{
−1 n ≤ −1

1
2n+1 n ≥ 0

• Expand the function

f(z) =
z

(z − 1)(z + 2i)
⇒ 1/5− 2i/5

z − 1
+

4/5 + 2i/5

z + 2i

in a Laurent series in the following regions.
– |z| < 1

f(z) =
1/5− 2i/5

z − 1
+

4/5 + 2i/5

z + 2i

=

(
2i− 1

5

) ∞∑
n=0

(
1−

(
i

2

)n)
zn

– 1 < |z| < 2

f(z) =
1/5− 2i/5

z − 1
+

4/5 + 2i/5

z + 2i

=

(
1− 2i

5

) ∞∑
n=0

1

zn+1
+

(
1− 2i

5

) ∞∑
n=0

(
i

2

)n

zn
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– |z| > 2

f(z) =
1/5− 2i/5

z − 1
+

4/5 + 2i/5

z + 2i

=

(
1− 2i

5

) ∞∑
n=0

1

zn+1
+

(
4/5 + 2i/5

z

) ∞∑
n=0

(−2i)
n

zn

3.9 Singularities of Complex Functions
An isolated singular point is a point where a given single-valued function is not analytic,
but analytic in the neighborhood surrounding the point.

Removable singularities can be “removed” by using a Taylor or Laurent series expansion
of the function.

An isolated singularity at z0 of f(z) is said to be a pole if f(z) has the following
representation.

f(z) =
ϕ(z)

(z − z0)
N

We call this an Nth order pole if N ≥ 2 and a simple pole if N = 1. The strength of the
pole is ϕ(z0).

An isolated singular point that is neither removable nor a pole is called an essential
singular point. These have “full” Laurent series expansions.

Theorem 29. If f(z) has an essential singularity at z = z0, then for any complex
number w, f(z) becomes arbitrarily close to w in a neighborhood of z0. That is, given
w, and any ϵ > 0, δ > 0, there is a z such that

|f(z)− w| < ϵ

whenever 0 < |z − z0| < δ.

An entire function is one that is analytic everywhere on the complex plane. A meromorphic
function is one that has only poles in the finite complex plane. A cluster point is an infinite
sequence of isolated singular points that cluster in a neighborhood. A boundary jump
discontinuity is where two analytic functions separated by a contour do not equal each
other at the contour.

3.10 Example - Singularities
Discuss all singularities of the following functions.

• z
z4+1 . It is a rational function, it only has simple poles at the roots of

z4 + 1 = 0, z =
{
eiπ/4, e3iπ/4, e5iπ/4, e7iπ/4

}
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• sin z
z3 . Function sin z is entire, so

sin z

z3
=
z − z3/3!− z5/5! + · · ·

z3

=
1

z2
− 1

6
+

z2

120
+ · · ·

so it has second order pole at z = 0 of strength 1, the only simple pole.
• cos z−1

z2 . The numerator is an entire function, so the only simple pole is z = 0.

cos z − 1

z2
=

1− z2/2! + z4/4!− · · · − 1

z2
= −1

2
+
z2

24
+ · · ·

so z = 0 is a removable simple pole.
• coth z = cosh z

sinh z , the ratio of two entire functions, so all simple poles are determined
by sinh z = 0, i.e. z = iπk for all k ∈ Z. Let u = z − iπk, then, since exp(iπk) =

exp(−iπk) = (−1)
k, one has

coth z =
cosh z

sinh z
=

cosh (u+ iπk)

sinh (u+ iπk)
=

(−1)
k
cosh(u)

(−1)
k
sinh(u)

=
cosh(u)

sinh(u)
=

1

u
+
u

3
+ · · ·

so all points z = iπk are simple poles with residue 1.

3.11 Analytic Continuation
This is the process of extending the range of validity for a given function into a larger
domain.

Theorem 30. A function that is analytic in a domain D is uniquely determined either
by values in some interior domain of D or along an arc interior to D.

Theorem 31 (Monodromy Theorem). Let D be a simply connected domain and f(z)
be analytic in some disk D0 ⊂ D. If the function can be analytically continued along
any two distinct smooth contours C1 and C2 to a point in D, and if there are no singular
points enclosed within C1 and C2, then the result of each analytic continuation is the
same and the function is single valued.

Some functions can’t be analytically continued due to a singularity referred to as a natural
barrier.

3.12 Example - Analytic Continuation
Discuss the analytic continuation of the following function.

∞∑
n=0

zn+1

n+ 1
=

ˆ z

0

( ∞∑
n=0

un

)
du, |z| < 1
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The first series indeed converges only for |z| < 1 where it defines an analytic function. For
|u| ≤ |z| < 1, the integrated series converges uniformly, so

ˆ z

0

( ∞∑
n=0

un

)
du =

∑
n=0

∞
ˆ z

0

un du =

∞∑
n=0

zn+1

n+ 1

On the other hand, for |u| ≤ |z| < 1,
ˆ z

0

( ∞∑
n=0

un

)
du =

ˆ z

0

du

1− u
= log(1− z)

where a branch analytic inside |z| < 1 is implied. Such a branh of log(1− z) is obtained e.g.
if one makes a branch cut [1,+∞) on the positive real axis. Then the branch is analytic
in C \ [1,+∞), and, if one sets log 1 = 0 to specify the branch, then it is equal to the first
series in |z| < 1. Then this branch is the analytic continuation of the series to the region C
minus the cut.

4 Residue Calculus and Applications of Contour Integration
4.1 Cauchy Residue Theorem
We’ve already discussed the Laurent expansion of f(z) to be, for some analytic f(z) in the
region D, defined by 0 < |z − z0| < ρ, with z = z0 isolated singular point,

f(z) =

∞∑
n=−∞

Cn(z − z0)
n

Cn =
1

2πi

˛
C

f(z) dz

(z − z0)
n+1

where C is a simple closed contour in D. The negative part of the series is referred to
as the principal part, while the coefficient C−1 is called the residue of f(z) at z0, denoted
C−1 = Res(f(z); z0).

Theorem 32 (Cauchy Residue Theorem). Let f(z) be analytic inside and on a simple
closed contour C, except for a finite number of isolated singular points z1, . . . , zN located
inside C. Then

˛
f(z) dz = 2πi

N∑
j=1

aj

where aj is the residue of f(z) at z = zj, denoted by aj = Res(f(z); zj).

This is a generic approach, however if f(z) has a pole in the neighborhood of z0, then it’s a
lot easier. Define

f(z) =
ϕ(z)

(z − z0)
m
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where ϕ(z) is analytic in the neighborhood of z0, m is a positive integer, and if ϕ(z0) ̸= 0,
f has a pole of order m. Then the residue of f(z) at z0 is given by

C−1 =
1

(m− 1)!

(
dm−1

dzm−1
ϕ

)
(z = z0)

=
1

(m− 1)!

dm−1

dzm−1
((z − z0)

m
f(z))(z = z0)

If it’s the fraction of two rational functions, N and D, it can be as easy as N(z0)/D
′(z0).

Sometimes we care about the residue at infinity.

Res(f(z);∞) =
1

2πi

˛
C∞

f(z) dz

=
1

2πi

˛
Cϵ

(
1

t2

)
f

(
1

t

)
dt

The value w(zj) is called the winding number of the curve C around the point zj . This value
represents the number of times that C winds around zj . Positive means counterclockwise.

w(zj) =
1

2πi

˛
C

dz

z − zj

=
1

2πi
[log (z − zj)]C

=
∆θj
2π

4.2 Example - Residues
Evaluate the integral

I =
1

2πi

˛
C

f(z)dz

where C is the unit circle centered at the origin, for the following f(z).
• f(z) = z+1

z3+a3 , 0 < a < 1 There are singular points at z = −a, a exp(iπ/3), and
a exp(−iπ/3); all of these are inside the unit circle, so

I = Res(f ;−a) + Res(f ; a exp(iπ/3)) + Res(f ; a exp(−iπ/3)

=
−a+ 1(

−a− aeiπ/3
)(
−a− ae−iπ/33

)+
aeiπ/3 + 1(

aeiπ/3 + a
)(
aeiπ/3 − ae−iπ/3

)+
ae−iπ/33 + 1(

ae−iπ/3 + a
)(
ae−iπ/3 − aeiπ/3

)
= 0

• f(z) = sin(1/z). Since z = 0 is the only singular point of f(z), we do a Laurent series
expansion about z = 0. Thus, Res(f ; 0) = 1 and I = 1.
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4.3 Evaluation of Certain Definite Integrals
We can use complex integration to solve real integrals as well.

4.3.1 Infinite Endpoints

For integrals of the form

I =

ˆ ∞

−∞
f(x) dx

where f(x) is real valued. These integrals converge if the following two limits exist.

I = lim
L→∞

ˆ α

−L

f(x) dx+ lim
R→∞

ˆ R

α

f(x) dx α finite

To evaluate this integral, we can take C to be a large semicircle that encloses all singularities
of f(z). Using this, we have

ˆ ∞

−∞
f(x) dx = 2πi

N∑
j=1

Res(f(z); zj)

Theorem 33. Let f(z) = N(z)/D(z) be a rational function such that the degree of
D(z) exceeds the degree of N(z) by at least two. Then

lim
R→∞

ˆ
CR

f(z) dz = 0

In other words, the integral converges.

Theorem 34 (Jordan’s Lemma). Suppose that on the circular arc CR we have f(z) → 0
uniformly as R→ ∞. Then

lim
R→∞

ˆ
CR

eikzf(z) dz = 0 (k > 0)

4.3.2 Polar Endpoints

Now we consider integrals of the following form:

I =

ˆ 2π

0

f(sin θ, cos θ) dθ

where f(x, y) is a rational function of x, y. We can make a substitution, use the residue
theorem, and voila!

I = 2πi

N∑
j=1

Res

f
(

z−1/z
2i , z+1/z

2

)
iz

; zj


Complex Variables 27 Mark Ablowitz



Complex Variables Zoe Farmer

4.4 Indented Contours, Principal Value Integrals, and Integrals
With Branch Points

4.4.1 Principal Value Integrals

In the previous section we had to prove convergence before attempting to make sense of
an integral. This isn’t always the case, and in fact we can also make sense of a divergent
integral using the Cauchy Principal Value integral

 b

a

f(x) dx = lim
ϵ→0+

(ˆ x0−ϵ

a

+

ˆ b

x0+ϵ

)
f(x) dx (1)

We need to use this due to the assumed singularity at x = x0. This integral only exists if
the limit exists.

Figure 4: Small circular arc Cϵ

Using figure 4 we can rewrite (1) as
 ∞

−∞
f(x) dx = lim

R→∞

(ˆ a

−R

+

ˆ R

b

)
f(x) dx+

lim
ϵ1,ϵ2,...,ϵN→0+

(ˆ x1−ϵ1

a

+

ˆ x2−ϵ2

x1+ϵ1

+ · · ·+
ˆ b

xN+ϵN

)
f(x) dx

A handy theorem follows.

Theorem 35. 1. Suppose that on the contour Cϵ we have (z − z0)f(z) → 0
uniformly as ϵ→ 0. Then

lim
ϵ→0

ˆ
Cϵ

f(z) dz = 0

2. Suppose f(z) has a simple pole at z = z0 with residue Res(f(z); z0) = C−1. Then
for the contour Cϵ

lim
ϵ→0

ˆ
Cϵ

f(z) dz = iϕC−1

where the integration is carried out in the positive (counterclockwise) sense.

Basically, what we’re doing here, is taking the limit as the bounds on the real integral go
to infinity, and looping around through the complex plane, using the nice properties we get
from the complex plane.

Complex Variables 28 Mark Ablowitz



Complex Variables Zoe Farmer

4.4.2 Integrals With Branch Points

We can use the same strategy to integrate functions with branch points.

Theorem 36. If on a circular arc CR of radius R and center z = 0, zf(z) → 0
uniformly as R→ ∞, then

lim
R→∞

ˆ
CR

f(z) dz = 0

4.5 The Argument Principle, Rouché’s Theorem

Theorem 37 (Argument Principle). Let f(z) be a meromorphic function defined inside
and on a simple closed contour C, with no zeros or poles on C. Then

I =
1

2πi

˛
C

f ′(z)

f(z)
dz = N − p =

1

2π
[arg f(z)]C

where N and P are the numbers of zeros and poles, respectively, of f(z) inside C; where
a multiple zero or pole is counted according to its multiplicity, and where arg f(z) is
the argument of f(z); that is, f(z) = |f(z)| exp(i arg f(z)) and [arg f(z)]C denotes the
change in the argument of f(z) over C.

The quantity 1
2πi [argw]C̃ is called the winding number of C̃ about the origin.

Theorem 38 (Rouché). Let f(z) and g(z) be analytic on and inside a simple closed
contour C. If |f(z)| > |g(z)| on C, then f(z) and [f(z) + g(z)] have the same number
of zeros inside the contour C.

4.6 Fourier and Laplace Transforms
In suitable function spaces, defined below, the Fourier transform pair is given by the following
relations:

f(x) =
1

2π

ˆ ∞

−∞
F̂ (k)eikx dk

F (x) =

ˆ ∞

−∞
f(k)e−ikx dx

F̂ (k) is called the Fourier transform of f(x). The other one is called the inverse Fourier
transform.
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5 Notes
5.1 Exams

3. Exam 1
(a) 1.1 - 2.5

4. Exam 2
(a) 2.6 - 3.5

5. Exam 3
(a) 3.3, 3.5, 4.1-4.5

5.2 Trig Identities
http://www.sosmath.com/trig/Trig5/trig5/trig5.html
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