
Computer Systems Notes Zoe Farmer

1 Program Structure and Execution

1 .1 Information Storage

Computers store information as a series of bits. These bits can be interpreted by
users in either source binary, comfortable decimal, or compatible hexadecimal.

Computers also have a default word size, i.e. the largest continuous block of
memory the computer can access. Currently, most computers are 32 bit, however
more are becoming 64.

Going with word size, each data type also has a typical size in memory:

C Declaration 32 Bit 64 Bit
char 1 1
short int 2 2
int 4 4
long int 4 8
long long int 8 8
char* 4 8
float 4 4
double 8 8

Table 1: Size of C Data Types

Besides the bits themselves, the order also matters, which brings up the
distinction between little-endian and big-endian1. Big Endian has the highest
place values put in the lowest memory location, while Little Endian has the lowest
place values put in the lowest memory location.

1 .2 Integer Arithmetic

Depending on the type of numbers involved in addition, we can get strange or
unexpected behavior.

If we’re dealing with large numbers, ones that are near to the word size in
length, we have to be concerned about overflow. Overflow occurs when the full
integer result cannot fit within the word size limits of the given data type.

Unsigned integer addition results in a something that resembles modular
addition. If we have signed integers, we need to now concern ourselves with the
negative numbers as well. Negative overflow often results in a positive number due
to the definition of two’s complement.2

1Name arises from Gulliver’s Travels
2Computers express negative numbers by essentially inverting the bits. Normal binary adds

each place, this version subtracts each place from the highest set bit. For a 4 bit word size, the
number 1011 would actually be -5 instead of 11.

1 .3 Floating Point
The first method of expressing floating point numbers for a computer was through
fractional binary numbers. These numbers had the form:

2m︷︸︸︷
bm

2m−1︷ ︸︸ ︷
bm−1 · · ·

2︷︸︸︷
b1

1︷︸︸︷
b0 . b−1︸︷︷︸

1/2

b−2︸︷︷︸
1/4

· · · b−n−1︸ ︷︷ ︸
1/2n−1

b−n︸︷︷︸
1/2n

The inherent issue with this method, is that it’s not very good at dealing with
larger numbers. This is where IEEE floating point standard comes in, which has
the form:

V = (−1)s ×M × 2E

Where:
• s determines sign
• M is a fractional binary number ranging from 1 and 2− ϵ or between 0 and

1− ϵ

• E weighs the number by a power of 2.
• Final format looks as such:

S E M

With these floating point numbers, we have three cases to deal with.
1. Normalized Values are the most common. This occurs when E is neither

all ones nor all zeros.
2. Denormalized Values occur when the exponent field is all zeros. These

values express zero, as well as numbers that are very close to zero in absolute
value.

3. Special Values occur when the exponent field is all ones. This either
indicates ±∞ or NaN when the fractional value is non-zero.

2 Machine Level Representation of Programs
Most computers primarily use assembly for a more human-readable machine code.
This code is much more explicit than the C that it was derived from.

Several fields that are visible in assembly that we lacked access to before:3
• The program counter, referred to as PC, and called %eip, refers to the

address in memory of the next instruction to be executed.
• The integer register file contains eight named locations storing 32 bit values.
• Condition code registers
• Floating point registers

3For sake of simplicity, all memory addresses are for 32 bit platforms only.

CSCI 2400 1 Han

Computer Systems Notes Zoe Farmer

There are a number of different commands that assembly uses in order to provide
all the functionality available in C code. These are summarized in the table below.

We have to delve slightly deeper in the jump command however. The jump
command depends on operational flags, and allows for sophisticated code.

2 .1 Procedures
A procedure call involves taking data from one part of the program to another.
This is managed by the program stack.

The program stack has two registers assigned to it, the stack pointer %esp and
the frame pointer %ebp.

By convention, certain registers are kept private. Usually the registers %eax,
%edx, and %ecx are classified as caller-save registers, that is the registers that are
written to by the function caller. On the other hand, the registers %ebx, %esi,
and %edi are classified as callee-save registers. That is the registers needed by the
called function.

2 .2 Arrays
Arrays are a common tool, and are fairly simplistic in nature. These work in
principle by allocating the required memory for the specified data type, and
referencing to it in order.

Structures are treated (to an extent) the exact same as arrays. When a structure
is created, the required memory for the data types fills contiguous space in memory.

Figure 1: IA32 Stack Structure

CSCI 2400 2 Han

Computer Systems Notes Zoe Farmer

3 Processor Architecture
3 .1 Y86 Instruction Set
In this instruction set some commands are split up into several.

3 .2 Sequential Implementations vs. Pipelining
In a sequential implementation, all cycles occur one after another. No new
operation can start until the old one has finished.

Figure 2: Sequential Implementation

Conversely in a pipelined implementation, we split up the cycles into stage and
begin operations before old ones have finished.

4 Optimization
Optimization is an art.

We can use the metric cylces per element (CPE) to express how effective a
program is.

First step in code optimization is to reduce the number of bottlenecks. This is
referred to as code motion.

After that’s complete, we remove unnecessary memory referencing.
Follower by loop unrolling, the strategy that involves taking loops with a

concrete number of steps and turning them into a set of similar commands.
Parallelization can be utilized in certain cases.

Command Generic Syntax Example Description
M [Imm+R[Eb] +R[Ei] · s] Imm(Eb, Ei, s) 0xFC(%eax,%edx,4) Reference memory location based off of preset values.
mov mov src,dst mov (%esp),%edx Copy the data from the source location to the destination.
push push item push $0xFF Push an item onto the stack.
pop pop item pop $0xFF Pop an item from the stack.
leal leal src,dst leal 6(%eax),%edx Load Effective Address takes whatever src points to, and loads it

into dst.
inc inc dst dst = dst+ 1
dec dec dst dst = dst− 1
neg neg dst −dst
not not dst ∼ dst
add add src,dst dst = dst+ src
sub sub src,dst dst = dst− src
imul imul src,dst dst = dst ∗ src
xor xor src,dst dst = dst ∧ src
or or src,dst dst = dst|src
and and src,dst dst = dst&src
sal sal k,dst dst = dst << k
shl shl k,dst dst = dst << k
sar sar k,dst dst = dst>>Ak
shr shr k,dst dst = dst>>Lk
cmp cmp src2,src1 cmp %eax,%edx Sets flags on src1 - src2.
test test src2,src1 test %eax,%edx Sets flags on src1 & src2.
jmp jmp dst Direct Jump
je/jne jmp dst Jump equal/not equal
js/jns jmp dst Jump negative/not negative
jg/jge/jl/jle jmp dst Jump greater/less
ja/jae/jb/jbe jmp dst Jump above/below
call call label call 8049908 Call procedure for execution
leave leave Prepare stack for return. This sets the stack pointer to the

beginning of the frame and restores the saved %ebp.
ret ret Return from call

Table 2: Assembly Reference

CSCI 2400 3 Han

Computer Systems Notes Zoe Farmer

halt stop the program
nop no operation
rrmovl register → register
irmovl immediate → register
rmmovl register → memory
mrmovl memory → register
OP1 integer operation
jxx jumps
call call function
ret Return
pushl push onto stack
popl pop from stack

Table 3: Y86 Instruction Set

5 Memory Hierarchy
5 .1 RAM
RAM comes in two forms, static and dynamic. Static RAM is much more expensive,
but way faster.

5 .1.1 SRAM

Each bit is stored in a bistable memory cell. It can only be in one position or
another, never both, or neither. It will also keep its state indefinitely as long as
it’s kept powered.

5 .1.2 DRAM

Each bit is stored as a charge on a capacitor. They lose power relatively quickly,
and are much cheaper.

5 .2 Disk Storage
Disks have several platters that spin at a fixed rate. The capacity of a disk is
determined by

Recording Density × TrackDensity = Areal Density

or

Capacity =
bytes

sector
× averagesectors

track
× track

surface
× surfaces

platter
× platters

disk

There is an actuator arm responsible for reading and writing from and to the
disk.

Figure 3: Sequential Implementation

5 .3 Locality
There are two types of locality: Spatial and Temporal. Spatial locality refers to the
fact that when memory is accessed, the memory around it is likely to be accessed
in the near future. Temporal locality on the other hand refers to the notion that
when memory is accessed, it’s likely to be accessed again.

5 .4 Memory Hierarchy
Each layer down in the memory hierarchy you go down, you slow the speed but
decrease the cost. Therefore it’s essential to introduce the concept of caching.

Caching involves storing smaller chunks of memory in the fastest spots so that
you can access them only when you need them. A cache hit occurs when the
memory needed is in the cache. The memory is then used directly from there.
Conversely, a cache miss occurs when the memory is not cached.

Whenever there is a miss, the cache must use its replacement policy in order to
determine which block to evict in order to make room for the new block.

5 .4.1 Cache Capacity

The capacity of a cache can be expressed using the tuple (S,E,B,m), where each
memory address has m bits, forming M = 2m unique addresses, S = 2s cache sets,
E cache lines, and B = 2b data blocks. Caches also need t = m− (b+ s) tag bits
that uniquely identify the cache line.

Therefore capacity can be expressed as C = S × E ×B

CSCI 2400 4 Han

Computer Systems Notes Zoe Farmer

Figure 4: Sequential Implementation

5 .4.2 Direct Mapped Caches

A cache with one line per set is a direct-mapped cache. When we have a cache
miss, three steps occur.

Step One: Set Selection. The correct set is located using s.
Step Two: Line Matching. Determine if any line already contains the data. If

one does, we have a cache hit.
Step Three: Line Replacement. If we have a cache miss, we need to replace a

line with the new data.

5 .4.3 Set Associative Caches

Conflict misses arise when we have direct mapped caches, where there is one line
per set. We can relax this constraint a little, and establish each set to have at
least 2 lines. A set with 1 < E < C/B is called an E way set associative cache.
This is a much more sophisticated caching method, and we need to search each
line separately instead of each set like before. The replacement policies differ from
machine to machine, and it can be tricky determining what replacement method
is utilized.

5 .4.4 Fully Associative Caches

A fully associative cache has E = C/B. Set selection is trivial as there is only
one set, however indexing is tricky given that there are many similar tags. These
caches are not effective at a large scale.

CSCI 2400 5 Han

Computer Systems Notes Zoe Farmer

6 Linking

7 Virtual Memory
All Assembly code is executed using virtual memory. At no point is it aware of
the actual hardware address.

The MMU is in charge of converting these physical addresses to virtual ones,
and vice-versa. This can lead to problems however with fragmentation.

7 .1 Page Tables

To help solve this, most machines use fixed length pages, usually 4 KB. The
virtual page number is equal to the virtual address divided by the size of the page.

Page tables also map main memory to these fixed size pages as well. The page
table records a virtual page → hardware page mapping.

A page table is an array of page tables entries (PTE) that maps virtual pages
to physical ones.

The virtual address space, {0, 1, 2, · · · , N − 1}, with N = 2n, is mapped to the
physical address space, {0, 1, 2, 3, · · · ,M − 1}.

Physical pages are P = 2p bytes in size and have been partitioned into 3 disjoint
subsets. Unallocated have not been create by the VM system. Cached are currently
in memory. Unchached are not.

There is a valid bit on each row that indicates whether or not the row is currently
in memory.

Symbol Description
N = 2n Number of addresses in virtual space
M = 2m Number of addressses in physical space
P = 2p Page size (bytes)
VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index
TLBT TLB tag
PPO Physical page offset
PPN Physical page number
CO Byte offset within cache block
CI Cache index
CT Cache tag

CSCI 2400 6 Han

Computer Systems Notes Zoe Farmer

CSCI 2400 7 Han

	Program Structure and Execution
	Information Storage
	Integer Arithmetic
	Floating Point

	Machine Level Representation of Programs
	Procedures
	Arrays

	Processor Architecture
	Y86 Instruction Set
	Sequential Implementations vs. Pipelining

	Optimization
	Memory Hierarchy
	RAM
	SRAM
	DRAM

	Disk Storage
	Locality
	Memory Hierarchy
	Cache Capacity
	Direct Mapped Caches
	Set Associative Caches
	Fully Associative Caches

	Linking
	Virtual Memory
	Page Tables

