1 Separation of Variables

Y =331 +y) = ‘fo 331 +y)

Y g [
T T+y
W14y =t+c—|1+y
y=ce’ 1L k#0

2 Approximation Methods

2.1 Euler’s Method (Tangent Line Method) - 1768

With a given function 4/ = f(t,y) and a given set point py we can approxi-
mate the line point by point

For the initial value problem y' = f(t,4), y(to

tair = ta+h O]
Use the formulas
{Vv.+1 = Yo+ hf ()
2.1.1 Example

Obtain Euler approsimation on [0,0.4] with step size 0.1 of
Y = =2ty +t and y(0) = —
h=0.1 {f":“
w=-1
o+ h=0.1
yo + hf(to. o) = —1

ta=t,+h=02
2= g+ Bt p) = 097
.
"

t+h=03
{u:nw‘:vu
"

o + hf(ta, ) = ~0.9112
1 = ys + hf(t3,ys) = —0.826528

2.2 Runge-Kutta Method of Approximation

1f we have an IVP, we can calenlate the next values with a process similar

hive
tapr =ta+h
Y41l = Yo + hknz
‘Where @)
Kt = f(tns Un)
h h
w5 U+ Sk
(b )
For more precision, use the fourth order Runge-Kutta method. It is the

‘most commonly used method both because of its speed as well as its relative
precision.

ko

tost =ta+h

{um = Yo+ B (ki + 2keo + 2k + Kns)
Where

ku. = Fltn)

(3)
7 (1 G o)
=1 (1o Bt i)
Fus = f (b + oy + hkas)

b

3 Picard’s Theorem

Theorem 1 (Picard’s). Suppose the function m ,/) is continuous on the
region R = {(t.y)]a <t <bc<y<d} and (to, o) € R. Then there exists
o positive mmber h such that the TVP has a soluion for  in the inerual
(to = h,to+ h). Furthermore, it f,(t,y) is also continuous on R, then that
solution is unigue.

4 Linearity and Nonlinearity
An equation F(x, 15,75, .., 7,) = ¢ s linear if it is in the form ayy +am+

+ ity = ¢ where a, are constants.
Furthermore, if ¢ = 0, the equation is said to be homogencous

We can generalize the concept of a linear equation o a linear diffrential

cquation. A differential cquation F(y.1/,1/....y") = (1) is linar if it is
in the form: a,(£) 52 + ap_y (£) 5t +-- +m(r)‘dh+«‘.(v)’,\, = f(t) where

all function of ¢ are assumed o be defined over some common interval .
If £(t) = 0 over the interval 1, the differential equation is said to be

homogeneous.
Ve will also introduce some casier notation for linear algebraic cqua-

tions: X = [r1,2,....x,] and for linear differential equations: ¥
"yl
We will alko introduce  the lincar  operator L
(%) = @y + agry -+ 4,
L) = a2 b a0 (2L 4 0y
an = ar an

4.1 Properties

A solution of the algebraic is any X that satisfies the definition of lincar
algebraic equations, while a solution of the differential is for any § that
satisfies the definition of linear differential equations.

For homogeneous linear equations:

« A constant multiple of a solution is also a solution,

« The sum of two solutions is also a solution.

Linear Operator Properties

411 Superposition Principle

Let i and iy be any solutions of the homogencous linear equation L(i)
Their sum is also & solution. A constant multiple is a solution for any
constant k.

4.1.2 Nonhomogeneous Principle

Let @, be any solution to a linear nonhomogencous equation L(ii) =
(algebraic) or L(i) = f(1) (differential), then i = i, + i, is also a mlunun,
where i is a solution to the associated homogencous equation L(&

4.2 Steps for Solving Nonhomogeneous Linear Equa-
tions

1. Find all 6, of L(d) =

2. Fina any th,0/L()

3. Add them, & = i, + i, to get all solutions of L(&) = f

5 Solving 1* Order Linear Differential Equa-
tions
5.1 Buler-Lagrange 2-Stage Method

To solve a linear differential equation in the form i’ + p(t)y =
this method:

£(0) using

1. Solve ' + p(t)y = 0 by separation of variables to get y,, = ce~ P

2. Solve v/(t)e= IP0% = f(t) for v(t) to get the particular solution y, =
w(t)e TP

3. Combine to get

0 =t gy T 0% [ ggrmonn

5.2 Integrating Factor Method

1. Find the integrating factor ju(t) = /%04 (Note, [ p(t) dt can be any

antiderivative, In other words, don't bother with the addition of a
constant.)

2. Multiply each side by the integrating factor to get u(t)(y' + p(t)y) =
F(t)u(t) Which will always reduce to % (e 0 4y(t)) = f(t)el P02

Take the antiderivative of both sides e/ ¥y (t) = [ f(t)elP0%dt + c

1. Solve for y

W):,/uw//(,),f,,m‘,.,,,+(,,/ym,“ )

5.2.1 Example
If 2(£) is the amount of dissolved substance, then

dr

7~ Ruteln-RateOue
() = of 1 o ‘
1) - Where J Rate T = Concentration in - Flow Rate In
/ tedt > e (—t— 1) + ¢ "'\ Rate Out = Concentration in - Flow Rate Out
Wy =ct —t—1 We can also use these for cooling problems. Newton's law of caoling is as
follow
C o . . . AT
6 Applications of 1* Order Linear Differen- = = k=1

tial Equations

[T~ Temperature of the Object
Where
— Temperature of the Surroundings

6.1 Growth and Decay
The function 7 Systems of Differential Equations
#=hy

can e called the growth or decay equation depending on the sign of k
We can explicitly find the solution to these equations:

If one or more functions are dependent on other functions, then we call them
y=uy

Coupled

. conpled. Otherwise we call them decoupled

For each k, the solution of the IVP Y=
W Deconpled 1,
== k() =1 ©

dt
7.1 Autonomous First Order System

Is given by

u(t) = yoe™

v®) =10 Autonomous systems are not dependent on ¢, so we can treat them a little

We can use these equations for a wide variety of different equations such differently. For these equations we can use a phase plane, vector field, and
as contimously componnding interest the trajectory of the solution.

The functions () and y(t) can give us a parametric curve. This means

that at any given point on the curve, we also have a tangent vector given

o by %

m "

Every solution of a system we call a state of the system, and the collection
of all the trajectories and states is called a phase portrait

An vq\uhhn\\m point for this two dimensional system is an (z, ) point
where % = 0=

6.2 Mixing and Cooling

We can also uso these models for mising and cooling problems. A wixing 7 5 Graphical Methods for Solving
probl amount of substance goes into a receptacle at a

certain rate, and some amount of mixed substance comes out. We can model - Sketcl
is as such.

ng is a pain in the ass. Therefore there are a couple tricks that we
can use to make our lives casicr

We can use nullelines to more easily draw the solutions. Nullelines are 18 ~ Matrices

an adaptation of previously mentioned isoclines (?2). A V nulleline is an
isocline of vertical slopes where o An H nullcline is an isocline of
horizontal slopes where 5/ = 0. Equilibria occurs at. the point. where these
two mllclines intersect.

Note, when existence and uniqueness hold for an autonomous system,
phase plane trajectories never cross,

7.3 Quick Sketching Outline for Phase Portraits
1. Nullclines and Equilibria
+ Where 2/ = 0, slopes are vertical.
+ Where y' = 0, slopes are horizontal.
« Where #/ =y = 0, we have equilibria.
2. Left-Right Directions
« Where 2 is positive, arrows point right
+ Where #' is negative, arrows point left

3. Up-Down Directions

+ Where y/ is positive, arrows point up.
« Where y/ is negative, arrows point down.

1. Check Uniqueness
Where phase plane trajectories do not

oss, we have uniqueness

7.4 Appli
7.41 Predator-Prey Assumptions

of Systems of Di

In the absence of foxes, the rabbit population will grow with the Malthusian
Growth Law: % = apR.ay > 0 In the absence of rabbits, the fox population
will die off according to the law: 4 = —apF,ap > 0 When both foxes
and rabbits are present, the number of interactions is & the product of the
population sizes, with inverse behavior. Thus we can get the Lotka-Volterra
Equations for the predator prey model:

a -
{ agR — cgRF )

4 = —apF — cpRF

8.1 Definitions

@ ar ay an
bbb b

A=|a e a o (11)
g m,

We can also describe these matrices by saying it has order m x n where
m and n are the row and column sizes respectively. Two matrices are cqual
if they have the same m and n and the values contained are equal. We can
also have matrices with orders m x 1 or n x 1 which are called column and
row vectors.

1f all entries are 0, we call it a zero matrix; however if all entries but the
diagonal are zero, this is called an diagonal matrix. These diagonal mum-
ber are called diagonal elements. A special diagonal matrix is the identity
matrix, which is formed when the diagonal elements are ones,

10 0

010 )
1

00 o 1

8.2 Addition and Multiplication

Bach new element in the matriz is  result of the dot product between the
corresponding row and column matrices.

An A Ay
Am An An - Ay
A Anz Anm
By Bu - By
B | B B2 By @)
Bt Bua - B,
ACBL By e Ay B
ap_ |t B A B Ay By
Aw By Au-Ba o Au-B,

8.3 Matrix Transposition

We can flip a matrix diagonally so that its columns become rows and its
rows become columns, We call this the transpose of the matrix, written
T

8.3.1 Properties
« (A=A

« (A+B) = AT+ BT

o (KA)" = KAT for any scalar k

« (AB)" = ATB"

9 Matrices and Systems of Linear Equations

9.1 Augmented Matrix

An augmented matrix is where two different matrices are combined to form
a new matrix.
An An A | b1
An An o A | by
[Ab] = (1)

Au | b

29.2 Elementary Row Operations
« Interchange row i and i B = Ry, ; =

« Multiply row i by a constant. R = cR;

« Leaving j untouched, add to i a constant times j. Rf =

Ri+cR;

These are handy when dealing with matrices and trying to obtain Reduced
Row Echelon Form (??).

9.3 Reduced Row Echelon Form
b

100
01 0[b (15)
00 1]bs

[Alb] =

« 0 vows are at the bottom.
« Leftmost non-zero entry is 1, also called the pivot (or leading 1)
« Each pivot is further to the right than the one above,

+ Each pivot is the only non-zero entry in its column.

A less complete process gives us row echelon form, which allows for
nonzero entries are allowed above the pivot.

9.4 Gauss Jordan Reduction
1. Given a system AX = b
2. Form augmented matrix [A]5]
3. Transform to RREF (77) using elementary row operations.

4. The linear matrix formed by this process has the same solutions as the
initial system, however it is much easier to solve.

9.5 Existence and Uniqueness

1f the RREF has a row that looks like: [0.0,0, -+ 0[] where k is a non-zero For an n x n matrix A, the following procedure
constant, then the system has no solutions. We call this inconsistent. proves that it's impossible.
1f the system has one or more solutions, we call it consistent
In order to be unique, the system needs to be consistent.

39.7.2 Inverse Matrix by RREF

sither produces A1, or

1. Form the n x 2n matrix M = [A]1]
« If every column is & pivot, the there is only one solution (unique solu- 2. Transform M into its RREF, R

tion).
) 3. 1f the first n columns produce an Identity Matrix, then the last n are
+ Else If most columns are pivots, there are multiple solutions (possibly inverse. Otherwise A is not invertible,

infinite).

9.8 Invertibility and Solutions

« Else the system is inconsistent
The matrix vector equation Ax = b where A is an n x n matrix has:
9.6 Superposition, Nonhomogeneous Principle, and

RREF

For any nonhomogencous linear system A = B, we can write the solutions
as: £ = %, + %, Where %, represents vectors in the set of For the
solutions, and %, is a particular solution to the original equation.

We can use RRI"F to find X, and then, using the same RREF with b
replaced by 0, find X,

"The rank of a matrix £ cquals the mumber of pisot columns in the RREF.
1f 7 equals the number of variables, there is a unique solution. Otherwise if
there is less, then it is not unique.

+ A unique solution & = A~'b if and only if A is invertible.

« Either no solutions or infinitely many solutions if A is not invertible.

ion Ax = 0, there is always one solution, z = 0

called the trivial solution.
Let A be an n x n matrix. The following statements apply

© Adsan

« AT s an invertible matrix
« Ais row equivalent to I,

9.7 Inverse of a Matrix « A has n pivot columns.

. o+ e G c i
When given a system of equations lke: { A o e mowite it + The cquation A% = 6 has oy the trivial solution, X = 0

11T , « The cquation A = 0 has a unique solution for every b in R”
i the form: | 3 L[5 = For this sort of matrix, we can find

the inverse which is defined as lhe inatrix that, when multiplied \mln the 9.9 Determinants and Cramer’s Rule
original, equals an Identity Matrix. In other words: A~14 = A4~ =
9.9.1 2 x 2 Matrix

“To find the determinant of a2 x 2 matrix, the determinant is the diagonal
products subtracted. This process is demonstrated below.

_[an an
A= [ugv an } (16)

AL = a1, — g -

9.7.1 Properties
1

+ Aand B are invertible matrices of the same order if (AB)

[CON

« 1f Ais invertible, then so is A” and (4-1)" =

9.9.2 Definitions

Every element of a n x n matrix has an associated minor and cofactor.

« Minor = A (n = 1) x (n — 1) matrix obtai
and jth colum of A

d by deleting the ith row

« Cofactor — The scalar C;

€= 1)+ My

9.9.3 Recursive Method of an n x n matrix A

We can now determine a recursive method for any n x n matrix.
Using the definitions declared above, we use the recursive method that
follows,

1Al = Eu,,cz, 17)

Find j and then finish with the rules for the 2 x 2 matrix defined above
in (77

9.9.4 Row Operations and Determinants
Let A be square,
« 1f two rows of A are exchanged to get B, then |B| = —|A|

« Tf one row of A is multiplied by a constant ¢ and then added to another
row to get B, then B|

« If one ow of A is multiplied by a constant c, then |B| = ¢|A]

T4

0,4

called singular
Forann x n A and B, the determinant [AB] is given by |A]|B]|

9.9.5 Properties of Determinants

« If two rows of A are interchanged to equal B, then [B| = —[A|

« Tf one row of A is multiplied by a constant k, and then added to another
1ow to produce matrix B, then [B| = |A|

1

C AT = A
« IEA]# 0. then [A7)] = gy

« I Ais an upper or lower triangle matrix', then the determinant is the
product of the diagonals.

+ 1f one row or column consists of only zeros, then |A| = 0.
« 1f two rows or columns are equal, then [A] = 0.

« As invertible.

« A" is also invertible.

+ Ahas n pivot coluns.

“lAl£0

« 1F|A| = 0 it is called singular, otherwise it is nonsingular.

9.9.6 Cramer’s Rule

For the n x n matrix A with [4] # 0, denote by A the matrix obtained
from A by replacing its ith column with the column vector b. Then the ith
component of the solution of the system is given by:

1AL

al (18)

10 Vector Spaces and Subspaces

A vector space V is a non-empty collection of elements that we call vec-
tors, for which we can define the operation of vector addition and scalar
multiplication:

1. Addition: % + ¥
2. Scalars: X where ¢ is a constant

that satisfy the following propertics

LX+yey
2 eV

which can be condensed into a single equation: ¢ + dy € V' which is
called closure under linear combinations.

10.1 Properties

We have the properties from before, as well as new ones.

1%+ €V Addition

2. ¢X € V ¢ Scalar Multiplication

¢ Zero Element

= 0 + Additive Inverse

6. %+ =¥+ & Commutativity

7. 1-X =X ¢ Identity
8. o(%+¥) = %+ cy « Distributive Property
9. (¢4 d)% = % + d% « Distributive Property

10. ¢(d%) = (ed)X  Associativity

10.2 Vector Function Space

A vector function space is just a unique vector space where the elements of
the space are

Note, the solutions to linear and homogeneous differential equations form
vector spaces,

nctions.

510.2.2 Prominent Vector Function Spaces
« B? = The space of all ordered pairs.

« B The space of all ordered triples.

« R = The space of all ordered n-tuples.

+ P The space of all polynomials,

« B, = The space of all polynomials with degree < n.
o M, — The space of all m x n

atrices

« C(I) — The space of all continuous functions on the interval 1 (open.
closed, finite, and infinite).

« €(I) = Same as above, except with n contimious derivatives.

« € = The space of all ordered n-tuples of complex numbers

10.3 Vector Subspaces
Theorem: A non-cmpty subset W of a vector space V is a subspace of V
if it is closed under addition and scalar multiplication

o £,V eW, thni+Vew

« Ifii € Wand c € R, than cii € W,

We can rewrite this to be more efficient

16,V € Wand a,b € R, than aii + b¥ € W. (20)

Note, vector space does not imply subspace.
spaces, but not all vector spaces are subspaces.

To determine if it is a subspace, we check for closure with the above
theorem.

There are only a couple subspaces for B2

All subspaces are vector

« The zero subspace {(0.0)}

We can call the zero and the set ¥ themselves trivial subspaces, calling the611.2  Spanning Sets in R"
subspace of lines passing through the origin the only non-trivial subspace
in B2

We can clas

A veetor b in B is in Span{¥y.Va,...,¥,} where {¥,.¥s,....¥,} are
vectors in R”, provided that there is at least one solution of the matrix-
vector equation A% = b, where A is the matrix whose column vectors are

« Trivial V1. %

¢ R? simila

~ Zero subspace
R

11.3  Span Theorem

For a set of vectors {¥), v,
is subspace of V.

¥4} in veetor space , Span

Non-Trivial
— Lines that contain the origin 11.4  Column Space

~ Pla

For any m x n matrix A, the column space, denoted Col A, is the span of
the column veetors of A, and is a subspace of [mathbbR"

s that contain the origin

10.3.1 Examples
11.5 Linear Independence

« The set of all even functions.

A set {¥,.¥a.....¥,} of vectors in vector space V is linearly independent
if no vector of the set can be written as a linear combination of the others.
Otherwise it is Tinearly dependent.

This notion of linear independence also carries over to function spaces
A set of vector functions {¥,,¥a..... %} in a vector space V is lincarl
independent on an interval I if for all ¢ in I the only solution of ¢,¥; +
0 for (1. ¢a....cn € R) s ¢, = 0 for all i

If for any value fg of ¢ there is any solution with ¢; # 0, the vector
functions are linearly dependent

« The set of all solutions to " 4/t +y

« (PERPER)

P@3)}

Vot eV,

11 Span, Basis and Dimension

11.1 Span

V..., ¥y} of vectors in a vector space V, denoted 11,5,
'} is the set of all linear combinations of the vectors.

The span of a set {V .1 Testing for Linear Independence
v,

by Span{¥y. v,

1. (a) Put the system in matrix-vector form:
1111 Example LRI I s
Vi Ve oo Ve =0
3 o L 1
For example, fi= | 2 [ andv= | 2 o
0 2

(b) Analyze Matrix:

T ingle w0 whre either the lower or upper hlf is ero, o Then we can wite their span as The column vectors of A are linearly independent if and only if
+ Tone row of A is multiplied by k to produce matrix B, then [B = HA| |1 § 0 o 1021 Closure under Linear Combination + Lines passing through the origin. 3 the solution % = 0 is unique, which means ¢ = 0 for a
L1100 aitbi=al2|+b|2|=|20+2 Any of the following also satisfy this condition for a wnique solu-
« £ JAB| = 0, then cither |A] or |B| must be zero N 4 dF € V whenever £ € Vand c.d € R (19)  « R itscl 0 2 » tion
7 8 9




« Ais invertible. 11.6.1 Standard Basis for R"

+ Ahas n pivot columns [CRCS
. A[£0 where
1 0 0
2. Suppose we have a set of vectors V. {¥y, ¥, ..., V,} € R, dim(¥) = m. 0 1 0 (22)
Then the set ¥ is linearly dependent if n > m where n is the number &=|0|&=|0 &=|0
of lements in . Note, this cannot prove the opposite. It only goes one
1 1 0 1 0 0 1
way. 2 st -3 Is dependent he column vectors of the identity matrix
N B H R are the column vectors of the identity matrix I,

11.6.2 Example

w

Columns of A are linearly independent if and only if AX = 0 has only

A vector space can have different bases.
the trivial solutions of . >

The standard  basis for R

[T wielE om0 )

Bint another basis for R? is given by
2] [1

11.5.2 Linear Independence of Functions

One way to check a set of functions is to consider them as a one dimensional

vector. %(f) = fu(f) Another method is the Wronskian: e

11.7 Dimension of the Column Space of a Matrix

To find the Wronskian of functions fy. fa. ... f, on I
5 b P Essentially, the number of vectors in a basis.
Lo 21
Wi g gl | B G 1171 Properties
et et « The pivot columns of a matrix A form a basis for Column A

« The dimension of the column space, called the rank of A, is the number

1 W 0 for all £ on the interval I, where fi, fy,. .. f, are defined, then  of pivot columns in A. rank A — dim(Col(A))
the function space is a linearly independent set of functions on I

11.7.2 Tnvertible Matrix Characterizations

. ot Abe a a 3 are true.

116 Basis of a Vector Space Let A be am n x n matrix. The following are true

« Ais invertible

The set {V1,Va,....¥,} is a basis for vector space V provided that

« The column vector of A is linearly independent,

B « Every column of A is a pivot column.
. ¥y} is linearly independent.

« The column vectors of A form a basis for Col(A).

« Span{v, va i} =V + Rank A=n

Tase One | Real U
As0 nr

Overdamped Motion
i) = e + g

0 1 y,(t) is a solution of L(y) = £i(t), then y(t) = erys(t) = capalt) + -+ +
Caya(t) is a solution of L(y) = ey fy(t) + eafa(t) + -+ + enfult)
In order to apply this, we need the non-homogencous principle.

qual Roots

Case Two
-0

Critically Damped Motion

Real Repeated Root
i UhlE) = exe” + cate”

Theorem 5 (Non-Homogencous Principle). y(t) = y(t) + y,(t)

What this basically boils down to is making educated guesses in order
to identify the form of the particular solution, as well as eventually the
particular solution itsclf. Once the particular and homogencous solutions
are identified, add them to determine the solution. The following table may
¢ common formats and solution types

Casc Three | Complex Conjugate Roots | Underdamped Motion
a<o " ‘ lt) = e (cy cos (51) + exsin (51))

Table 1: Roots for Second Order Differential Equations in Characteristic

Equation Form | w(6)
A
12.4 Linear Independence :’(R
Age
The Solution Space Theorem (??) provides us with the number of solutions Agcos(wt) + Bysin(wt)
in a bases for an nth order homogeneous differential equation (n) Aglt)e
. u(t) cos(wt) + Qu(t) sin(wt) Au(t) cos(wt) + Bu(t) sin(wt)
« Starting with m solutions for the nth order case, if m > n the solutions Co o) + Do sinfet) Ak cos(at) + Byet sin(ut)

can 10 be independent.
cam no be ndependent Pu(t)et cos(wt) + Qult)eH sin(wt) | Au(t)e™ cos(wt) + Ba(t)e™ sin(wt)
« 1fm =, we must test using the concepts from before. Table 2 Guesses for Particular Solutions

« 1f m < n, the set does not span the space.
o Pult), Qu(t), Au(t), Bu(t) €

The Wronskian also tells us about the linear independence of a set of func- Ao By €Py =R
tions. This Wronskian is identical to the Wronskian previously defined (72).

Suppose {y1, 4z, .. - yn} is a set of solutions of an nth order homogeneous
differential equation.

12.4.1 Wronskian

w,C.DER

and [6] - [8] both terms must be in y, even if only one term is

L{y) = au(t)y" + aaa(y" ' + -+ an()y' + ao(t)y = present in f(t).
L 1E W{gs, ... y] # 0 at any point on (a,b), then the set is linearly If any term or terms of , is found in yy, multiply the term by  or 2 to
independent climinate the duplication

2. 1f Wlyi, gz .-, yu] = 0 at every point on (a,b), then the set is linearly

12.6 Variation of Parameters

dependent.
We've already used variation of parameters to find the solutions of o +
12.5 Undetermined Coefficients P(t)y = f(t). This same strategy can be applied to second order equations
- in the form:
Let's assume L(y) = aq(t)y" +an 1 (t)y" '+ +ay (t)y +ag(t)y = 0 where  y" + p(t)y’ + q(t)y = (1)

t € some interval I To apply this method, follow these steps.

« Equilibrium arrives at origin (Symmetric) 1314.3.1 Tnterpreting Non-Real Eigenvalues

[5]-e[wiazmi] [5]

« The first variable defines the expansion.

« Speed is determined by magnitude of the eigenvalues.

14.2 Linear Systems with Real Eigenvalues

To solve a system in the form — 1f a > 0 — Growth without bound
=A%

If < 0 — Decay to 0.

1. Find cigenvalues of A. ~ 1f a = 0 — Period solutions

ccond defines rotation.

2. Find associated cigenvectors. . The

3. Solution is in the form (for a 2 x 2 matrix at least) our solution is in ~ Counterclockwise for 5> 0
ntg,

the form: X(t) = 1My + e = Clockwise for § < 0

1f there are insufficient eigenvalues (repeated eigenvalues), follow the ¢ The third defines tilt and shape.

method below,
14.4 Stability and Linear Classification
1. Find the one cigenvalue
A constant solution % = & is called an equilibrium solution. An equilibrium
solution in the phase plane is a fixed point

2. Find its eigenvector
3. Find ¥ such that (4 — \)i = « If solutions remain close and tend to & as ¢ — oo we call this asymp-
totically stable.

4. Solution: X(1) = c;eM¥ + cxeM (17 4 1),
« If solutions are neither attracted nor repelled, we call this neutrally

14.3 Non-Real Eigenvalues stable

If we have a matrix A with non-real eigenvalues Ay, Ay = @ & i, the corre.  * 1f other, it is unstable.

sponding mgvn ectors are also complex conjugate pairs in the form
ViV +iq 14.5 Parameter Plane
To solve:

14.6 Possibilities in the Parameter Plane
1. For the first cigenvalue, find its eigenvector. The second eigenvector is e Lave to consider

a couple different possibilities.
a pair of the first

1. Real Distinct Eigcnvalucs (a>0

2 ('mmmn the real and non-real parts:
1 (cos(A1)B — sin(A)d) When A = ) — 4|A] > 0 we have real eigenvalues Ay # Ay with
% = (sin(§ e tly ) and ¥y with general
%, = e (sin(A1)B + cos(81)d) o
3. The gencral solution is defined as %(t) = 1%, (1) + ex%,(1) £ = e + e
16

12 Higher Order Linear Differential Equa- the methods given ahead, be sure to come back and determine how these

tions

mi +bi+ ka = f(t) (23)

12.1 Harmonic Oscillators
12.1.1 The Mass-Spring System

Consider an object with mass m on a table that is attached to a spring
attached to wall. When the object is moved by an external force, we can
model its behavior using Newton's Second Law of Motion: F = mi where
F is the sum of the forces acting on the object

We have three different types of forces

« Restoring Force: The restorative force of a spring is o< the amount
of stretching/compression: Fiaring = —kz

Damping Force: We also assume that friction exists, and thercfore
a damping force o the velocity of the object: Fiumpig = —bé Where
damping constant b > 0 and small for slick surfaces.

External Force: We also allow for an e
motion: Fixema = f(t)

ternal force to drive the

Thus we gt our equation for a Simple Harmonic Oscillator
mi + b+ kx = (1)

« Constants m > 0.k > 0,b> 0

When b= 0, the motion is called undamped. Otherwise it is damped.

« i f(t) = 0, the equation is homogencous and the motion is called
unforeed, undriven, or free. Otherwise it is forced, or driven

12.1.2 Solutions

When we say solution, we are referring to a solution that gives us z, in other
words, the position of the mass at any given time ¢ as a function of £. Due to
the inherent nature of derivatives, this may or may not have undetermined
constants (often denoted as [¢1, ..., c,]) as will be set by initial values
given (similar to first order differential equations).

Later we will determine how to solve these equations fully, however a quick
answer can be found by applying the following formulas. After learning

equation o + pl(t)y' + a(t)y =
() = e (t) + cana (1)

(1) this having the general solution

To find the particular solution, take y; (1)
constants to get y,(f) =
unknown functions.

1(£) + capa(t) and swap
o1ty (t) + va(t)ya(t) where vy and vy are

We find v, and v, by substituting our new equation into our first. Dif-
ferentiating by the product rule we get yf(t) = viy] + vay} + vjys + vjy

Before we calculate yf, we choose an auxiliary condition, that vy and v,
satisfy vjy1 + vhyo = 0 where we get y, = iy + yhve

B

5. Differentiating again we get y(1) = vuyf -+ vayl + viy} + viyl

6. We wish to get L(y) = ¢+ py/ +qy = / Substituting for what we have
solved for gives vly] + vy = 0
vty = 0
7. We now have two equations for our two unknowns {“" Ve

vl +vath = [
8. Solve the system of equations and inscrt
Another method is to use Cramer’s Rule (?7) where
» "
f l/z

%= and v}

)/ v
The denomiator in this e i the Weonskian. 1t will ot be 7ero becarse
both y; and y are linearly independent. Integrate these to find v, and v,

13 Linear Transformations

Veetors that aren’t rotated by linear transformations, but are only
flipped are called eigenvectors,

aled or

Theorem 6 (Eigenvalues and Eigenvectors). Let T : V — V be a linear
transformation. A scalar /\ is an eigenvalue of T is there is a nonzero vector
V€V such that T(¥)

Such a nonzero vector ¥ is called an cigenvector of T fo )

solutions were determined
quation: mi + kz = 0

er cos (wat) + ca sin (wot)

a(t) =

@
This gives s one form of the Solution, however we can also find an alter-

nate forn
(1) = Acos (ot — )
Where

+ Amplitude A and phase angle § (radians) are arbitrary constants deter-
mined by initial conditions.

« The motion has circular frequency wp = \/% (radians) per sccond, and
anatural frequency fo =

The period T (seconds) is 27 /T

The above solution is a horizontal shift of A cos(wyt) with phase shift
5

‘To convert between the two forms, apply the following formulas.
A= /rf 2

tand = o i
To solve the Mass- Spring System with both damping and forcing as given
by the followin
mi + bi + ki = Fy cos(uyt)
we can apply the following formula. (Noty
later in the text, refer back if needed)

ome concepts are explained

21(t) has three possible solutions. See (77)

2. ,(t) can be assumed as Acos(wst) + Bsi

o41) See (77).

R
4 2
L A= ey

R i
5B=5 ST L

As you can see, this is a pain. Values A and B in particular are tedious
to calculate. Despite this, as you'll see later, these methods can be easier
than solving by hand.

Find two linearly independent solutions of the second order differentialll To compute these eigenvalues and eigenvectors, follow the following

ste)

1. Write the characteristic equation |A — M| =

2. Solve the characte

ic equation for the eigenvalues.

3. For each eigenvalue, find the eigenvector by solving (A A1)V,

As you'd imagine, once the size of a matrix becomes larger than 2 or 3,
these steps are tedious and long. Computers to the reseuc!
13.1 Special Cases

Some special cases to watch ont for

+ Triangular Matrices: The cigenvalucs of a triangular matrix (upper
or lower) appear on the main diagonal.

+ 2 x 2 Matrices
(T (A)A+|A] =

The eigenvalues can be determined with \* —

« 3x 3 Matrices: Similarly: A* — \*Tr(A) — A} (Tr(A?) — Tr*(A)) —
det(A) =0
13.2 Eigenspaces

The set of all eigenvectors belonging to an eigenvalues A together with the
ze1o vector form a subspace of B called the cigenspace.

Theorem 7 (Eigenspaces). For cach cigenvalue X of a linear transformation
TV =V, the cigenspace Ex = {V € V| T(¥) = AV} is a subspace of V.

Theorem 8 (Distinct Eigenvalue). Let A be an n x n matriv. If
A A, are distinct eigenvalues with corresponding eigenvectors
V1, Varo o Vo, then {¥1,Va,.. o} is a set of linearly independent vectors
In other words, if each eigenvalue has one associated eigenvector, than that
set of eigenvectors is linearly independent.

If the lincar transformation T s regencrated by an n x n matriz A where
= " and T(¥) = AV, then A and ¥ are charucterized by the equation
AV = AV,

The signs of the eigenvalues direct the trajectory behavior in the phaseld

portrait.

d on the magnitude
the trajectories are parallel to fast

We can label the cigendirections fast or slow bas
of the eigenvalues. Whichever it s, th
and perpendicular to slow.

Three possibilitics
« Attracting Node (A < A; < 0)
« Repelling Node (0< A, < Ag)
« Saddle Point (A, <0< Ay)

Complex Conjugate Bigenvalues (A < 0)
When A = (Tr(A))* ~ 4]A| < 0 we get non-real eigenvalucs.
Aa=atBi

where a = ™ and §# = =A. a and § are real. The real solutions
are given by:

%, = e (cos( )P — sin(50)q)
%, = *!(sin(B1)B + cos(51)d)

For complex eigenvalues stability behavior depends on the sign of o

+ Atracting Spiral (o < 0)
+ Repelling Spiral (a > 0)
« Center (a=0)

3. Borderline Case: Zero Bigenvalues (|| = 0) If one cigenvalue
s zero we get a row of non-isolated fixed points in the cigendirection
associated with the eigenvalues, and the phase plane trajectories are all
straight lines in direction of other cigenvector
If two eigenvalues are zero, there is only one eigenvector, along which
we have a row of non-isolated fixed points. Trajectories from any other
point. in the phase plane must be parallel to the one eigenvector in the
direction specified by the system.

Borderline Case: Real Repeated Eigenvalues (A = 0)

In this situation we have two cases to contend with.

(a) Degenerate Node: If A has one linearly independent cigenvector
we call it degenerate. The sign of A gives its stability.

"Note, the same exact steps are followed even if we ave A to be in terms of i. The
only exception s that we are no longer in any B" space, and therefore there will be no
enspace (See (77))
re Tr(A) is the Trace of & matrix, Le. the sum of the main diagonal.

i

(b) Star Node: 1f A has two lincarly independent cigenvectors we call
it an attracting or repelling star node. The sign of A gives its
stability

In hoth cases, the sign of A gives its stability.
« 1f A > 0, trajectorics go to infinity, parallel to ¥.

« If A < 0, trajectories approach the origin parallel to ¥.

« 1F A =0, there exists a line of fixed points at the eigenvector.

15 Non-Linear Systems
15.1 Properties of Phase Plane Trajectories in Non-
Linear 2 x 2 Systems
1. When nniqueness holds, phase plane trajectories cannot cross.
2. When the given functions f and g are continuous, trajectories are con-
timuous and smooth.
15.2  Equilibria

Phase Portraits can have more than one, or none at all. To find a system’s
equ / simultaneously

ibria, solve o' and y/ s

15.3 Nullclines

Nullelines in this case are the same as before.

15.4 Limit Cycle

A limit eycle is a closed curve (representing a periodic solution) to which
other solutions tend by winding around more and more closely from cither
inside or outside.

16 Linearization

Theorem 9 (Jacobian). For a given system of equations:
' = flay)
Y =g(x.y)

12.1.3 Phase Planes for which p and g are continuous on (a, ), any two linearly independent
solutions {yn,y2} form a basis of the solutions space S, and every solution
yon (a.b) can be written as

Y(t) = e (t) + ea(t) = (1, 00) €R

To generalize we can apply the same principle to nth order differential

For any autonomous second order differential equation

= F(o.d)
the phase plane is the two dimensional graph
are the position and velocity respectively)?. Thi

th = and & axes (which
phase plane has a vector

field with direction given by cquations.
Ho%=i The
i corem (Existence and  Uniqueness for nth Order Dif-
& ferential ~ Equations). Let  py(t).pa(t),....pa(t)  be  continuous
can be formed by parametrically combining the vectors into  functions on  (a,b) containing ty or any initial  values
apath. A graph showing these trajectories is called a phase portrait. Ag Ao vy € R, there erists a unique solution y(t) to the IVP

o, Ar, o Ag 1
Yt ()" (0) + pr ()™
v ylto)
S0 = &r =2y

The biggest advantage with phase portraits is that is allows the user to For nth order differential vqu(\uun\ our solution space theorem (?7) ap-
solve the differential equation graphically, and not numerically. This can be plies, just replace the term * cond” with “n” and “nth”
much easier if done correctly.

‘The differential equation is also equivalent to the system of equations; (1) + palt)y2(0) + - + pu(y(t) = 0

=My () = Aro " () = A

" and

12.2 Properties and Theorems 12:3 Roots

If given a second order equation in the form aj + bj + cy = 0, we can
use our previous definition of a first order differential equation to find an
casier method of solving. At its core, this method consists of converting our

iven second order differential equation and converting it info a quadratic
equation, using which we can solve for the homogeneons solution.

For the linear homogencous, second-order differential equation

Y +p(t)y +a(t)y =0

with p and ¢ being continuous functions of #, there exists a two-
dimensional vector space of solutions

Y'(8) = flty.y) = —p(t)y — a(t ) 0
which gives us the existence and uniqueness theorem for the second order
equation

aj+by+ey =0 a?+br+e=0 (24)

The resulting equation is called the characteristic equation. Solutions to
Theorem 2 (Existence and Uniqueness). Let p(t) and q(t) be continuous this equation are called characteristic roots. Due to the nature of quadratic
ona,b containing to. For any A and B in R, there exists a unique solution ¢vations, there axe three different possibilities for the solution:

y(t) defined on (a,b) to the IVP y"+p(t)y/ +q(t)y = 0, y(to) = A,'(to) = B

+ Two distinct real roots or zeros
A basis exists for the general second order equation.

+ One real raot (a double root)

Theorem 3 (Solution Space). The solution space S for a second order
homogeneous differential equation has a Dimension of 2.
+ Two imaginary roots
For any linear second order homogeneous differential equation on (a.b),
v+ )y +alt

These are summarized as follows.
These methods allow us to generalize for higher order differential equa-
tions and find solutions that would be otherwise impossible,

This concept of a phase plane is identical to the one introduced in
exception of  replacing y.

) with the

13.3 Properties of Eigenvalues 12+ The domain of the linear transformation is a vector space of vector

funet;

Let A be an n x n matrix.

« The solution set is also a vector space of vector functions,

« s an eigenvalue of A if and only if [A — M| =0
« The eigenspace for each eigenvalue is a one dimensional line in the

has a non-trivial direction of a vector in R™

« Ais an cigenvalue of A if and only if (A — AD¥
solution.

« A has a zero eigenvalue if and only if |A] = 0 14 Linear Systems of Differential Equations

+ Aand A" have the same characteristic polynomials and eigenvalues. Ty define the linear first order differential equations systems
An n-dimensional first order differential equations system on an open
interval I is one that can be written as a matrix vector equation.

13.4 The Mind-Blowing Part

Remember Characteristic Roots (?2)? Well, they are identical to eigenval- ®(1) = AR(1) + (1)
ues as is evidenced below.
Given the lincar second order differential equation: « A(#) is an n x n matrix of continuous functions on 1.
Sy
e know that it has o characteristic quation of * f{8) 1s an n x 1 vector of continuons functions on I
2= )r+1)=0

« (1) is an n x 1 solution vector
with ropts of

2 .
mnl{® 18 (1) = 0. the

em is homogeneor

which creates the general solution of
y=cret + et
In Section 77 we saw that we can write a second order differential equation We use the phase plane from before to accurately represent these systems
as a system of equations;
i=y 14.1.1 Naullclines
J=2+y
i s e i fom
i ] andA=|9 1
¥ z 1
The characteristic equation [A—AT| = 0 for this matrix A is X'—A~2 = 0
which has the same cigenvalues as our original equation has characteristic
roots.

14.1 Graphical Methods

The v mullcline s the set of all points with vertical slope which oceur on
solving ' = f(2.) = 0 The h nullcline is the same
except. with horizontal slope and is found with o = f(z,y) = 0 At the

interseetion we get a fixed equilibrinm point,

the curve obt.

d by

14.1.2 Eigenvalues

Eigenvalues play a large role in phase planes as well. For an autonomous
13.4.1 Properties of Linear Homogeneous Differential Equations and homogeneous system of differential linear system of equations:

with Distinct Bigenvalues

+ Trajectories are toward or away based on the sign of the cigenvalue.

Az with

For the differential equation ¥ =
properties apply.

istinct eigenvalues, the following
« Along each eigenvector is the separatria that seperates different curves.

Tope Flgomalues Tzl System 15 Noulear System
Geometry tability Geometry Stability
el it | 35050 Attracting Node Asymptotically Stable Attracting Node Asymptotically Stable
[ 0<X <M Repelling Node Unstable Repelling Node Unstable
S Saddle Unstable Saddle Unisble
Real Repeatod | & = Az < 0 “Atiracting Star of Degenerate | Asymptotically Stablc “Attractig Node or Spial | Asymptotieally Stablc
Roots Node
A=A>0 Repelling Star or Degenerate | Unstable Repelling Node or Spiral Unstable
Node
Complox e Tepelhug Spral Tstable Tepellng Spial Thstable
Cotugs |2 <0 Adreting Spinl Asymptotically Stable Attracting Spiral Asvmptotically Stable
Roots a=p Conter Stable Center or Spiral Uncertain

Table 3: Table of Behavior Based on the
values

ystem’s Jacobian Matrix Eigen-

where f and g are tuice differentiable, the linearized system af an equilib-

rium point (., y.) translated by u = — z. and v =y -y, is
J . falze Fulweve) "
ve) where J(@e ) = | "7 grlae v (26)




