

	4.2 Steps for Solving Nonhomogeneous Linear Equations 1. Find all $\overrightarrow{\mathbf{u}}_{n}$ of $L(\overrightarrow{\mathbf{u}})=0$. 2. Fina any $\overrightarrow{\mathbf{u}}_{p} o f L(\overrightarrow{\mathbf{u}})=f$.
We will also introduce some easier notation for linear algebraic equa-	3. Add them, $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{n}+\overrightarrow{\mathbf{u}}_{p}$ to get all solutions of $L(\overrightarrow{\mathbf{u}})=f$.
	$\begin{aligned} & 5 \begin{array}{l} \text { Solving } 1^{\text {st }} \text { Order Linear Differential Equa- } \\ \text { tions } \end{array} \\ & \text { 5.1 Euler-Lagrange 2-Stage Method } \end{aligned}$
4.1 Properties	To salve alinarar differential equation in the form $y^{\prime}+p(t) y=f(t)$ using this method:
algebraic equations, while a solution of the differential is for any $\overrightarrow{\mathbf{y}}$ that satisfies the definition of linear differential equations.	
For homogeneous linear equations: - A constant multiple of a solution is also a solution.	
- The sum of two salutions is is aso s solut	3. Combine to get
Linear Operator Properios	
- $L(k, \mathrm{i} i)=k L(\mathrm{i}), k \in \mathbb{R}$.	
	5.2 Integrating Factor Method Find the integrating factor $\mu(t)=e^{\int p(t)}$ it $\left(\right.$ Note, $\int p(t) d t$ can be any antiderivative. In other words. don't bother with the addition of
Let $\overrightarrow{\mathbf{u}}_{1}$ and $\overrightarrow{\mathbf{u}}_{2}$ be any solutions of the homogeneous linear equation $L(\overrightarrow{\mathbf{u}})=0$. Their sum	2. Multiply each side by the integrating factor to get $\mu(t)\left(y^{\prime}+p(t) y\right)=$ $f(t) \mu(t)$ Which will always reduce to $\frac{d}{d t}\left(e^{\int p(t) d t} y(t)\right)=f(t) e^{\int p(t) d t}$
4.1.2 Nonhomogenoous Principle	
Let $\overrightarrow{\mathbf{u}}_{1}$ be any solution to a linear nonhomogeneous equation $L(\overrightarrow{\mathbf{u}})=c$ (algebraic) or $L(\overrightarrow{\mathbf{u}})=f(t)$ (differential), then $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{n}+\overrightarrow{\mathbf{u}}_{p}$ is also a solution, (algebraic) or $L(\overrightarrow{\mathbf{u}})=f(t)$ (differential), then $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{n}+\overrightarrow{\mathbf{u}}_{p}$ is also a solution where $\overrightarrow{\mathbf{u}}$ is a solution to the associated homogeneous equation $L(\overrightarrow{\mathbf{u}})=0$.	4. Solve for y
29.	29.2 Elementary Row Operations
	$R_{i}=$
B_{11} B_{11} \cdots $B_{1 p}$ B_{21} B_{22} \cdots $B_{2 p}$ B_{21} $B_{2 p}$ B_{2} (13)	- Leaving j untouched, add to i a constant times $j . R_{i}^{*}=R_{i}+c R_{j}$
	These are handy when dealing with matrices and trying to obtain Reduced Row Echelon Form (??).
$A_{m} \cdot B_{2} \cdots \cdots A_{m} B_{m} B_{4}$	9.3 Reduced Row Echelon Form
8.3 Matrix Transposition We can flip a matrix diagonally so that its columns become rows a	$\|\mathrm{A}\| \mathrm{A}]=\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right.$
8.3.1 Properties	also called
- $\left(\mathbf{A}^{\text {a }}\right)^{T}=\mathbf{A}$	Heer to the right than the one above.
$\cdots\left(\mathbf{A}+\mathbf{B}^{T}=\mathbf{A}^{T}+\mathrm{B}^{T}\right.$	- Each pivot is the only nonzere entry in its ollum.
$\begin{aligned} & \cdot(k \mathbf{A})^{1}=k \mathbf{A}^{T} \text { for } \\ & \cdot(\mathbf{A B})^{T}=\mathbf{A}^{T} \mathbf{B}^{T} \end{aligned}$	
	10.2.2 Prominent Vector Function Spaces
2. $\alpha \in V$	- $\mathbb{R}^{2} \rightarrow$ The space of all ordered pairs.
which can be condensed into a single equation: $c \overrightarrow{\mathbf{x}}+d \overrightarrow{\mathbf{y}} \in \mathcal{V}$ which iscalled closure under linear combinations.	- $\mathbb{R}^{3} \rightarrow$ The space of all ordered triples.
	\rightarrow The space ofall ordered n tuples.
10.1 Properties	P \rightarrow The space of all polymomilals
We have the properies from before, as well as nevo ones.	- $\mathbb{P}_{n} \rightarrow$ The space of all polynomilas with degree \leq
1. $\bar{x}+\bar{y} \in V+$ Addition	- Mmm The space ofall m
2. $\alpha \in \mathcal{C}$ ¢ Salar Multipication	
3. $\bar{x}+\overrightarrow{0}=\vec{x}+$ Zero Element	- $\mathrm{C}^{(}(\mathrm{I}) \rightarrow$ Same as above, exept with n contimuols deriativ
	11.0 ordered n nuples
$\begin{aligned} & \text { 4. } \overrightarrow{\mathbf{x}}+(-\overrightarrow{\mathbf{x}})=(-\overrightarrow{\mathbf{x}})+\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}} \leftarrow \text { Additive Inverse } \\ & \text { 5. }(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})+\overrightarrow{\mathbf{z}}=\overrightarrow{\mathbf{x}}+(\overrightarrow{\mathbf{y}}+\overrightarrow{\mathbf{z}}) \leftarrow \text { Associative Property } \end{aligned}$	10.3 Vector Subspaces
6. $\bar{x}+\bar{y}=\bar{y}+\bar{x}+$ Commutativity	
7.1: $\overline{\mathrm{x}}=\overline{\mathrm{x}}+\mathrm{Identity}$	W. than $\bar{u}+\overrightarrow{\mathrm{V}} \in \mathrm{W}$.
8.c $(\bar{x}+\hat{y})=\alpha \bar{\alpha}+\bar{y}+$ Distributive Property	
9. $(c+d) \mathbf{x}=\alpha \boldsymbol{\alpha}+d \bar{\chi} \leftarrow$ - Distriuutive Property	We can revite thist to be more efficient
10. $c(d x)=(\alpha d) x \leftarrow$ Asocoiatrivit	
	To determine if it is a sulspace, we check for dosure with the above theorem.
the space are functions. Note, the solutions to linear and homogeneous differential equations form vector spaces.	There are only a couple sulspaces for R?
	- The erorosubppece $(\{0,0)$.
10.2.1 Closure under Linear Combination	- Lines pasaing through the origin.
	- \mathbb{R}^{2} itsalf.

$12 \underset{\text { Hio }}{\mathrm{Hi}}$
Higher Order Linear Differential Equa
tions
 ditions Mer determined $k x=0$
${ }^{(22)}$
12.1 Harmonic Oscillato

This gives us one fom of the

- Restoring Froce: The retorative force of

- Constants $m>0, k>0, b>0$

When $b=0$, the motion is called undamped. Othervise it is damped.
in $f(t)=0$, the equation is homogenous and the motion is allod
12.1.2 Solutions

 Ampitude A And phase angles (radians) are arbitrayy constants deter
mined hy mintial (onditions:
 The period T (secondis) is $2 \pi \sqrt{7}$

- The above salution isa horizontal shifit of A cos $(\omega(\omega t)$ with phase shiff

1. $x_{1}(t)$ has hruce pasibibe solutions. Sce (??)
2. $x_{r}(t)$ can be
$3 . u_{\mathrm{b}}=\sqrt{\frac{\mathrm{m}}{m}}$

To comptet these cigenaluses and eigenvectoss, follow the followins

-

8. Solve the system of equations and inert.

Solve che charanacterisitic conation n or the $\mid=0$
3. For each iegenwalace, find the igigenvector by solving $(A-\lambda, I) \vec{v}_{\mathrm{i}}=0$

13.1 Special Cases

- Triangular Matricess The eigenalume ofa triangular matrix (upper
-2×2 Matricess
$\left(T r^{2}(A) \lambda+\lambda \mid=0\right.$
The eigenanalues can be detemined with λ^{2}
$\left.-\begin{array}{c}3 \times 3 \\ \text { det } \\ \text { dit }\end{array}\right)=0$

3.2 Eigenspaces

13 Linear Transformations

The signs
portrit.

and perpendiculur to
Threce posisilitices

Atructing Node $\left(\lambda_{2}<\lambda_{2}<0\right)$ Repeling Node $\left(0<\lambda_{1}<\lambda_{2}\right)$ Sandile Point $\left(\lambda_{1}<0<\lambda_{2}\right)$

Complex Conjugate Eigenvalues ($\Delta<0$)

In both cases, the sign of λ gives its stability.

Complex Conjugate Eigenvalues $(\Delta<0)$
When $\Delta=(T \mathrm{~T}(A))^{2}-4|A|<0$ we get nonren el ligenemalues.
15 Non-Linear Systems

Attracting spiral $(\alpha<0)$

Linear 2×2 Systems
When umiquenes hods, phase plane trajectorice camot cross.
-Repeling spirial ($\alpha<0$ (>0)

[^0]16 Linearization

2.1.3 Phase Planes

- we can apply the same prinípele to toth order differentio

$$
12.3 \text { Root }
$$

12.2 Properties and Theorems	12.3 Roots
Linar homogenous, second-order differential equation	If given a second order equation in the
$y^{\left.y^{\prime \prime}+p(t)\right)^{+}+q(t) y=0}$	
, mint 4 deng	
cranti	
	$a j \dot{+j j}+c y=0 \Leftrightarrow a r^{2}+b r+c=0$

Thation.

$1, y^{2}(t)=B$
Two distinct real roots or rences

Two inaginary yoots
13.3 Properties of Eigenvalues

- λ is an eigenemalue of A if and omly if $|A-\lambda|=0$

Solution.
Ahasa a zero eigenvance if and only if $|\mathrm{A}|=0$
A and A^{T} hane the same charateresitic polynominals and digenvalues.
3.4 The Mind-Blowing Part

Given the limaras scond order differential cquation:	- $A(t)$ is an $n \times n$ matrix of ontimous functions on I.
we chow that it has a charatererisic equation of	- $f(t)$ is an $n \times 1$ vector of continuous fanctions on I.
(${ }^{2}-r-2=(r-2)(r+1)=0$	- $\mathrm{x}(t)$ is an $n \times 1$ solution vetor.
	- If $f(t)=0$, the
whidid crates the gemela solution of	14.1 Graphical Methods

4.1 Graplal Merod

14.1.1 Nullclines
The v mulldine is the

Trijectoris are Coward or amy based on the sign of the cigenalue

[190	Limmam	Cimanar	,	Some	Smem
			ate		ateme
Remine		Namems sum oibem	2.m.mumaly sum		
	$x_{i=1}>0$		Tixathe		Tinate
	and $\begin{aligned} & a \geq 0 \\ & a=0 \\ & =0\end{aligned}$	Repelling Spiral Attracting Spiral Center	come	Repelling Spiral Attracting Spiral Center or Spiral	

[^0]: Borderine Casee: Real Repeated Eigenvalues
 In this stination whe have two cases to contenl with.

