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1 Overview

Right off the bat we need to discuss the difference between discrete and
contnuous. A Discrto unit i indivsible, and wo count disrotethings. This
gives us mumber such as the set of Natural numbers, N = {0,1,2,3,4,

On the flipside, we measure with continuous units. This
and non-negative real numbers.

We also have discrete structures which include sets, sequences, networks,
‘matrices, permmtations, and real-world data.

These structures are what the class will focus on.

gives us Fctions

Theorem 1 (Naive Set Theory). A set is an unordered collection of objects.
Let S be a set. If there are exactly n distinct objects in S (where n is a
non-negative integer), then we say the cardinality of S is n, ie. || = n.!
If is an element of S, we say € S
Let A and B be sets, the Cartesian product of A and B, A x B, is
the set of all ordered pairs (a,b) where a € A and b € B. i.c. Ax B
{(ab)ae Abe B}

2 Principles of Counting

Theorem 2 (Multiplicative Principle of Counting?). If task 1 can be done
in ny ways, and task 2 can be done in ny ways, then the total number of
ways to do one task and then the other is n, - n

Theorem 3 (Additive Principle of Connting). If task 1 can be done in ny
ways, and task 2 can be done in ny ways, then the total number of ways to
do one task or then the other is ny + ny.

2.1 Pigeon-Hole Principle
Theorem 4 (The Pigeon-Hole Principle). If n pigeons fly into k pigeon
holes, and k < n, then some pigeon hole must contain at least 2 pigeons

If f is a fanction from a finite sct 7 to a finite set y, and if 2| > |y|. then
Fl1) = f(wa) Jor some w123 € ¥ such that z, # 73

Theorem 5 (The Extended Pigeon-Hole Principle). If N pigeons are
assigned to K < N pigeon holes, then one of the pigeon holes must contain
at least | + 1 or [£] pigeons.

iy agmber of elements in . Ordinality is for ordering infinities.
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2.2 Permutations and Combinations

Theorem 6 A
distinct objects in which order matters.
Any ondered arrangement of r objects is called an r-permutation.
The number of ordered armngements (permutations) of v objects from n
objects (0 < r < n) is

is any linear of

n

P =

In general. if there are n objects, with ny of type 1, my of type 2, ... to

type v then there are —2— total permutations of the n objects

Theorem 7.
matter
compose it

The number of combinations of size r using n different objects is expressed

Cln,r) = (;’) —cr

Example 2 .1. How many different committees can be formed consisting
of one chair, one vice-chair, and one treasurer from a pool of 100 people?

< The answer is not C(100,5), but rather 48

A combinations is a sequence of objects where order does not
¢ size of a combination is the number of different clements that

as
!l Pln,r)
EITEr ]

Example 2 .2. Same question as before, but suppose we have one chair,
one vice-chair, and two treasurers.
—+ 100-99 9

Example 2 3. How many ways are there to arrange the lotters in
TALLAHASSEE” without having adjacent “A™s?
< First off, disregard all of the “A™'s, we'll insert those later

TLLHSSEE —

8
BIEE)

Next, determine the possible slots for the “A™s to go, which are in
between each of the letters, as well as at the beginning and end. This

Zoe Farmndf.

leads to a total of
8 9
opit) \3

2.3 Binomial Coefficients

Theorem 8 (The Binomial Theorem). Let & and y be variables, and let n
be a mon-negative integer, then

oSS o
(@ +v) 7;(1) "y
2.4 Powersets
The powerset of a set s the sct of all its possible subscts.

Example 2 .4. How many subsets does the st {1,2,3,4,
<> Let's count sets of size

S
()

n
e

) have?

So we ht\W‘"ﬂ total of
@) () () ()-uev

2.5 Counting Integer Solutions

" (Binomial Theorem)

The number of different, non-negative integer solutions (1. ya
the equation:

w) of

DAt =m

Think of this as counting the mumber of ways to distribute m objects to
K baskets.
2.6 Linear Recursion

Theorem 9. A lincar recursion with constant coefficients is a recurrence
relation of the form.

where n > k, F(n) is a function of n only, c; € Ryi = 12+~ .k, and
0
ve call this a homogencous lincar recursion of degree k with

ients.

Theorem 10. Assume a sequence {a,}
recursion.®

satisfies some degree k. linear

ay = el + 02,9 =2

Let vy and y be the roots of the

aructeristic equation

2
Pearte

If 1y = 3, then 3{as, a3 € Rla, = (a1 + awn)ri}
If 1 # 2 then 3{ay, az € Rla,

nr{ + aory

Examplc 2.5. Sulw 4+ a1~ Ga,
"This comes from looking at the simplest possible
o 2 Ly

case: a,

e ot = et

50 = 12" and b, = ¢,(~3)" are solutions. In fact, since they are linearly

independent solutions, the general solution is*

@y = 2"+ ep(~3)"

We can also determine these coefficients with ag = 1,ay
answer of

2 giving our final
4 =2"n> 0w

2.6.1 Non-Homogeneous Linear Recursion

Theorem 11. Recall a non homogencous linear recursion with constant
cocfficients has the form
an=ciatn =1+ etz + o eyt i+ F(n)
with the associated homogeneous form,
Gn=ciatn= L+ ety e

"This wses a degree oquBiomer
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Auy solution to the non-homogencous lincar recursion has the form a, +h,,

a particular solution of the non-homogencous form, and b, is
colution. of the homogeneous form, 1. the sume cquation from diffecntid
equations with

where a, is

Solution = homogencous + non — homogencous

Suppose {a,} satisfies the non-homogeneous linear recursion where F(n) has
the form:

F(n) = (polynomial) - (exponential) = P(n) - S"
1. When S is NOT a oot of the characteristic equation of the second
form. Then the form is
a,=q(n) S

Where q(n) is again a polynomial with degree q < deg(P) is n

2. When S IS a root of the characteristic equation, then the form is

" q(n) - 5"

ap =

Where m is the mutiplicity of S as a root of the characteristic equation
and g(n) is the same.

Example 2 6. Find the general solution of

@y =3, 1 +2" 0 > Lay =1

=+ Note that the homogeneous linear recursion form gives us the roots

@, =3a, 1 7 a,=a3"a€R

" which gives us that

To find the particular solution, we note that F(n) =
the particular solution has the form

b=
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2.7 Divide and Conquer Algorithms

The divide and conquer strategy in general is to solve a given problem of
size n by breaking the general problem into a > 1 sub-problems of size %
forb>1

We assume f(n) satisfies f(n) = a- f (2) +u(n)

Let f be an increasing function that satisfies f(n) = a- f (3) +¢

a.b.c € Z+ and b > 2. 1 nfp = [T]f(a) will be O(n'»@) if a > 1
time has growth on the order of Oflog(n))

Furthermore, when @ > 1, and n = 15k = 1,2+ then the time
complexity f(n) = ¢; - nl®® 4 ¢y where ¢; = (1) + 75 and ¢ =

here

2.7.1 Master Theorem Corollary

Let f be an increasing fanction that satisfies f(n) = af(%) + en’ where
a.cE€Z7b>1Acd€ERc>0,d>0. i n ="t k€L then
1 f(n)is O(n") & a < b
T(n) is O(ne - log(n)) = a = b*
3. f(n) is O(n(®) & a > b

2.8 Generating Functions
‘Theorem 12. The generating function for the sequence {a,} ., is the series
A) =Y anz"
7

Think of the =5 as placeholders. We don’t actually care about their value.
Notation;

["]AGz)

Is the coefficient of the 2" term in the series A

Example 2 .7. If a, =
Az) =142+

Example 2 8. Show that the generating function for a = n,n > 0 is

1for all n > 0, then the generating function is

5
#(E ) =Een -t

APHM O the generating function is A(z) =

Theorem 13. If A(=) is the generating function for the sequence associated

10 {an}azo and if B(z) is the generating function associated to {by}uzo,

then

1. aA(2)+ BB(z) is the generating fanction associated to {aa, +8b,} =
where o, 8 €

2. A=z

B(2) is the genenating function associated to

{eu}uzo = Eum" "

Example 2 .9. In how many ways can change be given for 30 cents using

pennics, nickels, dim

=+ Let’s look at the gvncmmw mnrn(m\ for each currency: Pennies: (1+
5421042154 ) Dimes: (1420422042904

and quarters

Quaters: (1425 £ 294 270 1
The product of these polynomials is the total number of ways to make
change

A(2)B(2)C(2)D(z) = 1+ 2+ 22 + +2:5 4 1827

Therefore, there are 18 ways to make change for 30 cents.

2.9 The Inclusion/Exclusion Principle

This A!W)ll('~ to cardinality, area, mass, volume, etc.
How I

elements are there in AU B where A and B are finite sets?

[AUB, AnB]|

=4+ B~
Now consider three finite sets:

[AUBUC| = A+ B +]C] ~ AN B~ |ANC| - [BNC| +|AN BN C|

Notation for three finite sets:

[AU AUy = D7 A= D AN A+ AN 420 Ay
== ¥

Theorem 14 (Inclusion/Exclusion). Let Ay, Ay, -+ . A, be finite sets, then

Sujeet Bhat

[ e}

102500}

1yl

QY

et

i Jept1 2300 n))
2.9.1 Derangements

A derangement of (1,2,3.--- ,n) is any permutation of these mumbers that
Teaves no mumber in its original position.
For a given set, (1,2,3,-++ .n), there are approximatcly

or more accurately
w (S5

3 Logic and Proofs

o derangements

3.1 Propositional Logic

Before we begin we have to define the syntax of these expressions. Let the
letters p.q.r.s, - denote the various propositions, while 7" and F denote
the truth value of the statement.

First we define the negation of p, denoted ~p. This is expressed as the
statement, “It is not the case that

Next we define the conjunction of p and g, denoted pAg. T
is true when both p and g are true, but false otherwise.

The disjunction of p and g is true when either p or ¢ is true, and false
otherwise.

The exclusive or of p and ¢ is true when exactly one is true, and false
otherwise.

The conditional statement is defined by the expression “If p: then ¢

The biconditional statement is similar, except it is defined by the
expression “p if and only if g

s statement

3.2 Propositional Equivalences

A statement that is always true is called a tautology, while a statement that
is always false is callyg, apcoigadiction, and a statement that is neither is a

D.rmbm‘e,ﬂug A= 3 jAnal+ ‘»A(—l)“"‘th

DT BT R L)
APPMUBIT0 p [a [pha pValabalp—alp2— q
T|T[ T F [T
T|F| F | T | T|F F
Flry v | T | T | T ¥
Flpl P | F | F | T T

Table 1: Truth Table for Various Statements

Two statements are logically equivalent if p <=5 ¢ is a tautology.

3.3 Methods of Proof

3.3.1 Direct Proof

This style of proof directly proves the statement through application of
properties, definitions, or theorems. Tt is the most common type of proof.

3.3.2 Proof by Contraposition

p=a=qV(-p) = pV (). Therefore ~q = -

3.3.3  Proof by Contradiction

Suppose we wish to prove statement p, then assume ~p, and then prove =p
implies & contradiction.

3.

.4 Existence Proofs

To prove existence we can cither choose a constructive approach, or a
non-constructive approach. A constructive proof constructs an example
satisfying the conditions, and if it's not constructive, then it has to be
non-constructive.

3.3.5 Uniqueness Proofs
First prove (31)[P(x) = T]
Then prove that if P(y) = T for any y. then show y = z. Else if y # x,
show P(y) is false.
3.4
Bhearemda, (ThgWell-Ordering Principle). Every non-empty subsct of Z*
it m et —ttseif 7 ¥ m

Induction

no open sets or intéSvidst Bhat

Theorem 16 (The Principle of Mathematical Induction).
propositional function.
Suppose P(1) = T and ¥k €
P(n) =T for alln € T+
Note, induction requires tuo steps, the first of which being to prove P(1),
and the second to prove P(K) = P(k +1)

Let P(n) be a

e Z* if wherever P(k) = P(k + 1), then

4  Set Theory

Theorem 17. Definitions.
A set is a list of elements where repetition and order doesn’t matter.
2. If plz) is a propositional function with domain of speech u (the
universe) then A = {r € ulp(x)}. sox € A & p(z) is true. By
definition, the negation of v € A is v & A

Two sets are equal if they have exactly the same clements.

By definition, the only sct with no elements is the Empty Set, or null
set, denoted (} or @. Note, {0} is not the empty sct.

A is a subset of B 1/\71[r € A= x € B is true. We urite A C B,
and AC A. Note, A= B if and only if AC B and B C

6. A is a proper subset of rz if Ais a subsel of B, and A # B. So
Jufr e BAz Ac

4.1 Operations Between Sets
1. Union: For A, B C u we define AUB

reu(ee AV (reB)

Udi={reu@ieDreAl}
b1

2. Intersection: For A, B Cu ANB = {r € ul(re A)A(x € B)}
4= {x eul(vie iz ¢ AJ}

et

3. Set Complementation:
A} Fow Farmer

]
TPty Bk orgaTs s,

The complement of A” is

freurg
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4.2 Set Properties and Functions

Theorem 18. Definitions:
1. For sets A, B, we define the cartesian product of A x B = {(a,b)|(a €

A)A(be B)}

The difference between A and B is A—B = r ¢ B)}

A function from A to B is a rule that associates a unique element in

B to each element of A, i.c is a function from A to B if

(Ya,b € Ala=b= fla) = f(b)

If [+ A= Bisa function, then A is called the domain of f. B

is called the codomain, and the range of f is f(a) = {y € B|(3a €

Ay = f(a)]}. Note, by definition, the range is contained in the

codomain f(a) €

{r € ul(x € A)A(

3.

J A= B is inective, (1~ 1), or one-to-one, if for any y € B there

is at most one a in A such that f(a) = y.

6. f: A= B is surjective, or onto if for any y €
fla)=y

7. If [ is both one-to-one and surjective, then i is called bijective

on f:N -5 A

B,3a € A such that

8. A set A is said to be countable if there cxists a bij
9. I f: A= B is a bijection, then i is invertible.
10. A

that is not finite nor countable is said to be uncountable.

5 Algorithms and Integers

5.1 Complexity

Theorem 19. Definitions.
£ be a function [ : [0,00) = R and g
O(g) and say “f is of order g at most”

[~.00) = R, we write
If there exists constants

;

Complexity

1) on
O(log(n)) | logarithmic
0O(n) car
O(nlog(n)) | nlog(n)
O(n?) quadratic
O(n®) cubic
O(n™) polynomial
0(2") exponential
o(n!) factorial

Table 2: Big O Forms

¢> 0 and k 2 0 such that
|f()| < elglx)] for all z > k

9). “f and g are of the same order” if f = O(g) and
is is equivalent to saying 3ey, 05, k(0 < ¢ < ey Ak = 0)
< lg@)l < el f @)oo > k
)) and fox) = O(gs(x)), then

) lga()D)

ifg=0(f). 1
such that ¢; |f(z
Theorem 20. If fi(z) = O(g:(x
1 (fi+ f2)(x) = O(maz(|gy(
2 (fif2)(z) = Olg:(x) = ga(x))
Theorem 21. Definitions:
Time Complexity of an algorithm relates to the time required to give
outpu
2. Space Complexity relates to the computer memory required by the
algorithn,
3. Worst-Case Complecity is the mazimum number the algorithm for
input of size n.
4. Average Case Complerity is the average number of operations used to
solve a problem over all inputs of a given size.
Theorem 22. Let PR — R and g : R R be polynomials, then
= 0(q) & degree(p) < degree(q)

2p degree(q)

() & degree(p)

5.2 Greedy Algorithms

A greedy algorithm is an algorithm that makes the "best’ choice at cach
step.

SPEN 30Hange Problem 1

Consider the problem of making change for n cheents using quarters, dimes,
nickels, and pennics using the fewest tolal number of coin:

The strategy for this problem is defined as the following. At each step,
choose the coin of largest denomination possible without exceeding the total

def change(cl, c2, ..., c3,
c¢=100,0,0,...,0
for 1 in range(0, c)
while n >= c_i:
cli] = cli] + 1
n-ci

n):
# Number of coins we have 1

return ¢

Yoo sown

Lemma: 1§ n € Zon > 0, then n cents in change (¢.d,n,p), using the
fewest coins possible, has at most 24, In, 4p and cannot. have 24 + n. The
amonnt of change in dnp cannot 4

ed

5.3 Mergesort

The algorithm is as follows:
Step One is to split the given list into two equal sublists mntil each list
contains a single eloment.

Step Two is to merge the sublists until they are sorted.

Lemma: Let Ly, Ly be the two sorted lists of ascending mumbers, where
L; contains n; elements. Ly and Ly can be merged into a single list, L, using
at most ny + ny — 1 comparisons.

The worst-case complexity of mergesort is O(n - In(n))

5.4 Division Algorithm

For any integers a,b € Zla # 0, a divides b, afb if 3c € Z such that b= ac
Let a,b be positive integers, then there are unique integers q.7, 0 << b
such that a = by + 1
1f we consider a fixed b > 1 then
D’ > 0 and  3((agan-a0) €01, b—1})
[(o # 0) A (n = aubt + s~ + - + 0y = Th i)

5.4.1 Uniquencisjeet Bhat

b>1

‘The representation of any mumber n € Z*U{0} is unique for each fixed base
b

5.5 Base b Expansion

The following algorithm finds the base b representation of any integer n > 0.

def base_b_expansion(n,b):
q=n
k=0
while g 1= 0

BPMM Modular Arithmetic 5

Fix m > 2(m € Z) and if a,b € Z, then a is congruent to b mod m.a = b(
mod m), if and only if m|(a — b) and 3k € Z such that a —b = mk = a =
b+ mk
110 a = b( mod m) = (a = qum+7) A (b= gzm +r). In other words, a
and b have the same remainder after dividing by m

fa=b=a=b modm)
3.0fa mod m) and a,b € {0,1,2
4 a=a( mod m)
5.a=b( modm)=b=al modm)
od m) Ab= e mod m) = a=c( mod m)
od m) = (a+¢) = (b+¢)( mod m) A (ac
A mod m) A ged(e,m) = 1= a
ged(am) = 1 = (3 € Z)ar = 1( mod m)],
inverse of amod m.

m}=a=b

(be)( mod m)

and o is called a

The complesity of the above algorithm s ©(logy(n))

5.6 Prime Numbers

A prime number can be defined as a positive integer p > 1if the only positive
factors of p are 1 and p.
ber s not prime, it is composite.

Every integer can be written as a product of primes uniquely up to the
order of the primes.

There are infinitely many primes.

If nis a composite integer then n has a prime divisor < AT, and

contrapositively, if n doesn’t have a prime divisor < /7, then n is prime.

5.61 GCD

For integers a.b € Z, a positive integer ¢ is called the greatest common
divisor of a and b if
1. (cla) A (clb)
2. (dla) A (db) = (dc) = (d < )
Two numbers are relatively prime if their GCD is one.
f a.b.g.r are non-negative integers such that a = bg + r
ged(a,b) = ged(b, ).
fa,b € Z and ged(a,b) = 1 then (3. 5 € Z)[1 = aa + 3
The corollary of the above cquation is that if a,b
(303 € Z) [ged(a.b) = aa + 61]

then the

€ Z then

5.7.1 The Space Z,
Let m = {a( mod 11)[z € Z) which is equivalent to
{[0).[11.12]. [m]) Each hox is [1] = wod m)}. These
are called equi

5.8 Dirichlet’s Approximation Theorem
For every irrational mmber o, there are infinitely many rational mumbers 2
such that o — £| < &

Lemma: For any integer n > 1 there is a rational number 2 such that

o -2 < Lwheel<g<n

6  Graph Theory

A graph can be defined by letting V' be a finite, non-cmpty set of nodes and
E be a set of edges. The pair of scts forms a graph

In dirccted graphs we care about, the direction of the nodes, and the order
of the pairs in £ mater.

In undirected graphs order docs not matter.

Multigraphs are graphs that allow several edges between the same two
nodes

A simple graph iSuiefiidahat an undirected graph with no loops and no
multiple edges.

If a graph is undirected, then the total degree of the vertices
twice the edges, therefore there must be an even sum of degrecs.

We also have out degree and in degrees.

A gmph is called bipartite if it can be written as V-
5=, and every edge is of the form {a,b} € GAa € i AbE Vs

" A complete bipatite graph has every node in Vi adjacent to every node
in Vi

If we have a graph, then a proper coloring of the graph allows that each
adjacent node be a different color.

The mi iber of colors to properly color a graph is called its
chromatic mumber. A graph s bipartite i its chromatic number is 2

We cam express graphs as adjacency matrices.

equal to

ViU Vs where

APPM 3170 6
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