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1 Overview
Right off the bat we need to discuss the difference between discrete and
continuous. A Discrete unit is indivisible, and we count discrete things. This
gives us number such as the set of Natural numbers, N = {0, 1, 2, 3, 4, · · · }.

On the flipside, we measure with continuous units. This gives us fractions
and non-negative real numbers.

We also have discrete structures which include sets, sequences, networks,
matrices, permutations, and real-world data.

These structures are what the class will focus on.

Theorem 1 (Naive Set Theory). A set is an unordered collection of objects.
Let S be a set. If there are exactly n distinct objects in S (where n is a

non-negative integer), then we say the cardinality of S is n, i.e. |S| = n.1
If x is an element of S, we say x ∈ S.
Let A and B be sets, the Cartesian product of A and B, A × B, is

the set of all ordered pairs (a, b) where a ∈ A and b ∈ B, i.e. A × B =
{(a, b)|a ∈ A, b ∈ B}.

2 Principles of Counting
Theorem 2 (Multiplicative Principle of Counting2). If task 1 can be done
in n1 ways, and task 2 can be done in n2 ways, then the total number of
ways to do one task and then the other is n1 · n2.

Theorem 3 (Additive Principle of Counting). If task 1 can be done in n1

ways, and task 2 can be done in n2 ways, then the total number of ways to
do one task or then the other is n1 + n2.

2 .1 Pigeon-Hole Principle
Theorem 4 (The Pigeon-Hole Principle). If n pigeons fly into k pigeon
holes, and k < n, then some pigeon hole must contain at least 2 pigeons.

If f is a function from a finite set x to a finite set y, and if |x| > |y|, then
f(x1) = f(x2) for some x1, x2 ∈ x such that x1 ̸= x2

Theorem 5 (The Extended Pigeon-Hole Principle). If N pigeons are
assigned to K < N pigeon holes, then one of the pigeon holes must contain
at least

⌊
N−1
K

⌋
+ 1 or

⌈
N
K

⌉
pigeons.

1Cardinality is the number of elements in S. Ordinality is for ordering infinities.
2Product Rule

2 .2 Permutations and Combinations
Theorem 6 (Permutations). A permutation is any linear arrangement of
distinct objects in which order matters.

Any ordered arrangement of r objects is called an r-permutation.
The number of ordered arrangements (permutations) of r objects from n

objects (0 ≤ r ≤ n) is

P (n, r) =
n!

(n− r)!
= P n

r

In general, if there are n objects, with n1 of type 1, n2 of type 2, . . . , to
type r, then there are n!

n1!n2!···nr!
total permutations of the n objects.

Theorem 7. A combinations is a sequence of objects where order does not
matter. The size of a combination is the number of different elements that
compose it.

The number of combinations of size r using n different objects is expressed
as

C(n, r) =

(
n
r

)
= Cn

r =
n!

r!(n− r)!
=

P (n, r)

r!

Example 2 .1. How many different committees can be formed consisting
of one chair, one vice-chair, and one treasurer from a pool of 100 people?

↪→ The answer is not C(100, 5), but rather 100!
97!

Example 2 .2. Same question as before, but suppose we have one chair,
one vice-chair, and two treasurers.

↪→ 100 · 99 ·
(
98
2

)
Example 2 .3. How many ways are there to arrange the letters in
“TALLAHASSEE” without having adjacent “A”’s?

↪→ First off, disregard all of the “A”’s, we’ll insert those later.

TLLHSSEE → 8!

2!2!2!

Next, determine the possible slots for the “A”’s to go, which are in
between each of the letters, as well as at the beginning and end. This
leads to a total of (

8!

2!2!2!

)
·
(
9
3

)
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2 .3 Binomial Coefficients
Theorem 8 (The Binomial Theorem). Let x and y be variables, and let n
be a non-negative integer, then

(x+ y)n =
∞∑
j=0

(
n
j

)
xn−jyj

2 .4 Powersets
The powerset of a set is the set of all its possible subsets.

Example 2 .4. How many subsets does the set {1, 2, 3, 4, · · · , n} have?
↪→ Let’s count sets of size
• 0 ⇒

(
n
0

)
• 1 ⇒

(
n
1

)
• n ⇒

(
n
n

)
So we have a total of(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
= (1 + 1)n = 2n(Binomial Theorem)

2 .5 Counting Integer Solutions
The number of different, non-negative integer solutions (y1, y2, · · · , yk) of
the equation:

y1 + y2 + · · ·+ yk = m

is (
m+ k − 1

k − 1

)
Think of this as counting the number of ways to distribute m objects to

k baskets.

2 .6 Linear Recursion
Theorem 9. A linear recursion with constant coefficients is a recurrence
relation of the form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k + F (n)

where n ≥ k, F (n) is a function of n only, ci ∈ R, i = 1, 2, · · · , k, and
ck ̸= 0.

If F (n) = 0 we call this a homogeneous linear recursion of degree k with
constant coefficients.

Theorem 10. Assume a sequence {an} satisfies some degree k linear
recursion.3

an = c1an−1 + c2an−2, n ≥ 2

Let r1 and 2 be the roots of the characteristic equation

r2 = c1r + c2

1 If r1 = r2, then ∃{α1, α2 ∈ R|an = (α1 + α2n)r
n
1}

2 If r1 ̸= r2 then ∃{α1, α2 ∈ R|an = α1r
n
1 + α2r

n
2}

Example 2 .5. Solve an + an−1 − 6an−2 = 0, n ≥ 2
↪→ Assume an = crn. This comes from looking at the simplest possible
case: an = ran−1, n ≥ 1, a0 = c → an = crn

↪→ crn + crn−1 − 6crn−2 = 0 → 1 + r−1 − 6r−2 = 0

↪→ r2 + r − 6 = 0 → r1,2 = 2,−3

So an = c12
n and bn = c2(−3)n are solutions. In fact, since they are linearly

independent solutions, the general solution is4

an = c12
n + c2(−3)n

We can also determine these coefficients with a0 = 1, a1 = 2 giving our final
answer of

an = 2n, n ≥ 0■

2 .6.1 Non-Homogeneous Linear Recursion

Theorem 11. Recall a non homogeneous linear recursion with constant
coefficients has the form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k + F (n)

with the associated homogeneous form

an = c1a+ n− 1 + c2an−2 + · · ·+ ckan−k

3This uses a degree 2 equation
4since the recursion is linear
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Any solution to the non-homogeneous linear recursion has the form an + bn
where an is a particular solution of the non-homogeneous form, and bn is any
solution of the homogeneous form, i.e. the same equation from differential
equations with

Solution = homogeneous+ non− homogeneous

Suppose {an} satisfies the non-homogeneous linear recursion where F (n) has
the form:

F (n) = (polynomial) · (exponential) = P (n) · Sn

1. When S is NOT a root of the characteristic equation of the second
form. Then the form is

an = q(n) · Sn

Where q(n) is again a polynomial with degree q ≤ deg(P ) is n.
2. When S IS a root of the characteristic equation, then the form is

an = nm · q(n) · Sn

Where m is the multiplicity of S as a root of the characteristic equation
and q(n) is the same.

Example 2 .6. Find the general solution of

an = 3an−1 + 2n, n ≥ 1, a0 = 1

↪→ Note that the homogeneous linear recursion form gives us the roots

an = 3an−1 → r = 3− an = α3n, α ∈ R

To find the particular solution, we note that F (n) = 2n, which gives us that
the particular solution has the form

bn = c2n

Now

2 .7 Divide and Conquer Algorithms
The divide and conquer strategy in general is to solve a given problem of
size n by breaking the general problem into a ≥ 1 sub-problems of size n

b

for b ≥ 1.
We assume f(n) satisfies f(n) = a · f

(
n
b

)
+ y(n).

Let f be an increasing function that satisfies f(n) = a · f
(
n
b

)
+ c where

a, b, c ∈ Z+ and b ≥ 2. If n|b ⇒ 1 f(a) will be O(nlogb(a)) if a > 1 2 our
time has growth on the order of O(log(n)).

Furthermore, when a > 1, and n = bk, k = 1, 2, · · · then the time
complexity f(n) = c1 · nlogb(a) + c2 where c1 = f(1) + c

a−1
and c2 = − c

a−1
.

2 .7.1 Master Theorem Corollary

Let f be an increasing function that satisfies f(n) = af(n
b
) + cnd where

a, c ∈ Z+, b > 1 ∧ c, d ∈ R, c > 0, d ≥ 0. If n = bk, k ∈ Z+ then
1. f(n) is O(nd) ⇔ a < bd

2. f(n) is O(nd · log(n)) ⇔ a = bd

3. f(n) is O(nlogb(a)) ⇔ a > bd

2 .8 Generating Functions
Theorem 12. The generating function for the sequence {an}n≥0 is the series

A(z) =
∞∑
n=0

anz
n

Think of the zs as placeholders. We don’t actually care about their value.
Notation:

[zn]A(z)

Is the coefficient of the znth term in the series A(z).

Example 2 .7. If an = 1 for all n ≥ 0, then the generating function is
A(z) = 1 + z + z2 + z3 + · · ·+ zn = 1

1−z
=
∑∞

n=0 z
n

Example 2 .8. Show that the generating function for a = n, n ≥ 0 is
A(z) = z

(1−z)2

↪→ Note d
dz

(
1

1−z

)
= 1

(1−z)2

But d
dz

=
(

1
1−z

)
= d

dz
(
∑∞

n=0 z
n) =

∑∞
n=0 n− zn−1

So

z · 1

(1− z)2
= z ·

∞∑
n=0

nz−1 =
∞∑
n=0

nzn =
∞∑
n=0

anz
n → an = n
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Therefore the generating function is A(z) = z
(1−z)2

.

Theorem 13. If A(z) is the generating function for the sequence associated
to {an}n≥0 and if B(z) is the generating function associated to {bn}n≥0,
then

1. αA(z)+βB(z) is the generating function associated to {αan+βbn}n≥0

where α, β ∈ R.
2. A(z) ·B(z) is the generating function associated to

{cn}n≥0 =
a∑

k=0

akbn−k

Example 2 .9. In how many ways can change be given for 30 cents using
pennies, nickels, dimes, and quarters?

↪→ Let’s look at the generating functions for each currency: Pennies: (1+
z+z2+z3+· · · ) Nickels: (1+z5+z10+z15+· · · ) Dimes: (1+z10+z20+z30+· · · )
Quarters: (1 + z25 + z50 + z75 + · · · )

The product of these polynomials is the total number of ways to make
change.

A(z)B(z)C(z)D(z) = 1 + z + z2 + z3 + z4 + 2z5 + · · ·+ 18z30

Therefore, there are 18 ways to make change for 30 cents.

2 .9 The Inclusion/Exclusion Principle
This applies to cardinality, area, mass, volume, etc.. . .

How many elements are there in A ∪B where A and B are finite sets?

|A ∪B| = |A|+ |B| − |A ∩B|

Now consider three finite sets:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

Notation for three finite sets:

|A1 ∪ A2 ∪ A3| =
∑

1≤j≤3

|Ai| −
∑

1≤i<j≤3

|Ai ∩ Aj|+ |A1 ∩ A2 ∩ A3|

Theorem 14 (Inclusion/Exclusion). Let A1, A2, · · · , An be finite sets, then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩ Aj|+ · · ·+ (−1)n+1

∣∣∣∣∣
n⋂

i=1

ai

∣∣∣∣∣

or ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊂{1,2,3,4,...,n}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
or ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
I∈p({1,2,3,4,...,n})

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
2 .9.1 Derangements

A derangement of (1, 2, 3, · · · , n) is any permutation of these numbers that
leaves no number in its original position.

For a given set, (1, 2, 3, · · · , n), there are approximately n!
e

derangements,
or more accurately

n! ·

(
n∑

i=0

(−1)i

i!

)

3 Logic and Proofs

3 .1 Propositional Logic
Before we begin we have to define the syntax of these expressions. Let the
letters p, q, r, s, · · · denote the various propositions, while T and F denote
the truth value of the statement.

First we define the negation of p, denoted ¬p. This is expressed as the
statement, “It is not the case that p.”

Next we define the conjunction of p and q, denoted p∧ q. This statement
is true when both p and q are true, but false otherwise.

The disjunction of p and q is true when either p or q is true, and false
otherwise.

The exclusive or of p and q is true when exactly one is true, and false
otherwise.

The conditional statement is defined by the expression “If p; then q.”
The biconditional statement is similar, except it is defined by the

expression “p if and only if q.”

3 .2 Propositional Equivalences
A statement that is always true is called a tautology, while a statement that
is always false is called a contradiction, and a statement that is neither is a
contingency.
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p q p ∧ q p ∨ q q ⊕ q p → q p ⇐⇒ q
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Table 1: Truth Table for Various Statements

Two statements are logically equivalent if p ⇐⇒ q is a tautology.

3 .3 Methods of Proof
3 .3.1 Direct Proof

This style of proof directly proves the statement through application of
properties, definitions, or theorems. It is the most common type of proof.

3 .3.2 Proof by Contraposition

p ⇒ q ≡ q ∨ (¬p) ≡ ¬p ∨ ¬(¬q). Therefore ¬q ⇒ ¬p.

3 .3.3 Proof by Contradiction

Suppose we wish to prove statement p, then assume ¬p, and then prove ¬p
implies a contradiction.

3 .3.4 Existence Proofs

To prove existence we can either choose a constructive approach, or a
non-constructive approach. A constructive proof constructs an example
satisfying the conditions, and if it’s not constructive, then it has to be
non-constructive.

3 .3.5 Uniqueness Proofs

First prove (∃x)[P (x) ⇒ T ]
Then prove that if P (y) ⇒ T for any y, then show y = x. Else if y ̸= x,

show P (y) is false.

3 .4 Induction
Theorem 15 (The Well-Ordering Principle). Every non-empty subset of Z+

contains a smallest element. Z+ itself is well-ordered. Note, Z+ contains

no open sets or intervals.

Theorem 16 (The Principle of Mathematical Induction). Let P (n) be a
propositional function.

Suppose P (1) ⇒ T and ∀k ∈ Z+ if wherever P (k) ⇒ P (k + 1), then
P (n) ⇒ T for all n ∈ Z+.

Note, induction requires two steps, the first of which being to prove P (1),
and the second to prove P (k) ⇒ P (k + 1).

4 Set Theory
Theorem 17. Definitions:

1. A set is a list of elements where repetition and order doesn’t matter.
2. If p(x) is a propositional function with domain of speech u (the

universe) then A = {x ∈ u|p(x)}, so x ∈ A ⇔ p(x) is true. By
definition, the negation of x ∈ A is x ̸∈ A.

3. Two sets are equal if they have exactly the same elements.
4. By definition, the only set with no elements is the Empty Set, or null

set, denoted {} or ∅. Note, {0} is not the empty set.
5. A is a subset of B if ∀x[x ∈ A ⇒ x ∈ B] is true. We write A ⊆ B,

and A ⊆ A. Note, A = B if and only if A ⊆ B and B ⊆ A.
6. A is a proper subset of B if A is a subset of B, and A ̸= B. So

∃x[x ∈ B ∧ x ̸∈ A]. A ⊂ B.

4 .1 Operations Between Sets
1. Union: For A,B ⊆ u we define A ∪B = {x ∈ u|(x ∈ A) ∨ (x ∈ B)}.⋃

i∈I

Ai = {x ∈ u|(∃i ∈ I)[x ∈ Ai]}

2. Intersection: For A,B ⊆ u,A ∩B = {x ∈ u|(x ∈ A) ∧ (x ∈ B)}.⋂
i∈I

Ai = {x ∈ u|(∀i ∈ I)[x ⊂ Ai]}

3. Set Complementation: “The complement of A” is Ac = {x ∈ u|x ̸∈
A}. uc = ∅. ∅c = u.

We can apply DeMorgan’s Laws.
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1. (⋃
i∈I

Ai

)c

=
⋂
i∈I

Ac
i

2. (⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i

4 .2 Set Properties and Functions
Theorem 18. Definitions:

1. For sets A, B, we define the cartesian product of A×B = {(a, b)|(a ∈
A) ∧ (b ∈ B)}

2. The difference between A and B is A−B = {x ∈ u|(x ∈ A)∧(x ̸∈ B)}.
3. A function from A to B is a rule that associates a unique element in

B to each element of A, i.e. f : A → B is a function from A to B if
(∀a, b ∈ A)[a = b ⇒ f(a) = f(b)].

4. If f : A → B is a function, then A is called the domain of f , B
is called the codomain, and the range of f is f(a) = {y ∈ B|(∃a ∈
A)[y = f(a)]}. Note, by definition, the range is contained in the
codomain f(a) ⊆ B.

5. f : A → B is injective, (1− 1), or one-to-one, if for any y ∈ B there
is at most one a in A such that f(a) = y.

6. f : A → B is surjective, or onto if for any y ∈ B, ∃a ∈ A such that
f(a) = y.

7. If f is both one-to-one and surjective, then it is called bijective.
8. A set A is said to be countable if there exists a bijection f : N → A.
9. If f : A → B is a bijection, then it is invertible.

10. A set that is not finite nor countable is said to be uncountable.

5 Algorithms and Integers

5 .1 Complexity
Theorem 19. Definitions:

1. Let f be a function f : [0,∞) → R and g : [−,∞) → R, we write
f = O(g) and say “f is of order g at most”. If there exists constants

Big O Form Complexity
O(1) constant
O(log(n)) logarithmic
O(n) linear
O(nlog(n)) nlog(n)
O(n2) quadratic
O(n3) cubic
O(nm) polynomial
O(2n) exponential
O(n!) factorial

Table 2: Big O Forms

c > 0 and k ≥ 0 such that
|f(x)| ≤ c |g(x)| for all x > k

2. We write f = Θ(g), “f and g are of the same order” if f = O(g) and
if g = O(f). This is equivalent to saying ∃c1, c2, k(0 < c1 < c2∧k ≥ 0)
such that c1 |f(x)| ≤ |g(x)| ≤ c2 |f(x)| , x > k.

Theorem 20. If f1(x) = O(g1(x)) and f2(x) = O(g2(x)), then
1. (f1 + f2)(x) = O(max(|g1(x)| , |g2(x)|))
2. (f1f2)(x) = O(g1(x)− g2(x))

Theorem 21. Definitions:
1. Time Complexity of an algorithm relates to the time required to give

output.
2. Space Complexity relates to the computer memory required by the

algorithm.
3. Worst-Case Complexity is the maximum number the algorithm for

input of size n.
4. Average Case Complexity is the average number of operations used to

solve a problem over all inputs of a given size.
Theorem 22. Let P : R → R and q : R → R be polynomials, then

1. p = O(q) ⇔ degree(p) ≤ degree(q)

2. p = Θ(q) ⇔ degree(p) = degree(q)

5 .2 Greedy Algorithms
A greedy algorithm is an algorithm that makes the "best" choice at each
step.
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5 .2.1 Change Problem

Consider the problem of making change for n checnts using quarters, dimes,
nickels, and pennies using the fewest total number of coins.

The strategy for this problem is defined as the following. At each step,
choose the coin of largest denomination possible without exceeding the total.

1 def change(c1, c2, ..., c3, n):
2 c = [0, 0, 0, ..., 0] # Number of coins we have
3 for i in range(0, c):
4 while n >= c_i:
5 c[i] = c[i] + 1
6 n = n - c_i
7 return c

Lemma: If n ∈ Z, n ≥ 0, then n cents in change (q, d, n, p), using the
fewest coins possible, has at most 2d, 1n, 4p and cannot have 2d + n. The
amount of change in dnp cannot exceed 24.

5 .3 Mergesort

The algorithm is as follows:
Step One is to split the given list into two equal sublists until each list

contains a single element.
Step Two is to merge the sublists until they are sorted.
Lemma: Let L1, L2 be the two sorted lists of ascending numbers, where

Li contains ni elements. L1 and L2 can be merged into a single list, L, using
at most n1 + n2 − 1 comparisons.

The worst-case complexity of mergesort is O(n · ln(n))

5 .4 Division Algorithm

For any integers a, b ∈ Z|a ̸= 0, a divides b, a|b if ∃c ∈ Z such that b = ac.
Let a, b be positive integers, then there are unique integers q, r, 0 ≤< b

such that a = bq + r.
If we consider a fixed b > 1 then

∃k ≥ 0 and ∃ ((a0, a1, · · · , ak) ∈ {0, 1, · · · , b− 1})[
(ak ̸= 0) ∧

(
n = akb

k + ak−1b
k−1 + · · ·+ a0 =

∑k
i=0 aib

i
)]

5 .4.1 Uniqueness

The representation of any number n ∈ Z+∪{0} is unique for each fixed base
b ≥ 1

5 .5 Base b Expansion
The following algorithm finds the base b representation of any integer n ≥ 0.

1 def base_b_expansion(n,b):
2 q = n
3 k = 0
4 while q != 0:
5 a_k = q % b
6 q = q / b
7 k += 1

The complexity of the above algorithm is Θ(logb(n))

5 .6 Prime Numbers
A prime number can be defined as a positive integer p > 1 if the only positive
factors of p are 1 and p.

If a number is not prime, it is composite.
Every integer can be written as a product of primes uniquely up to the

order of the primes.
There are infinitely many primes.
If n is a composite integer then n has a prime divisor ≤

√
n, and

contrapositively, if n doesn’t have a prime divisor ≤
√
n, then n is prime.

5 .6.1 GCD

For integers a, b ∈ Z, a positive integer c is called the greatest common
divisor of a and b if
1. (c|a) ∧ (c|b)
2. (d|a) ∧ (d|b) ⇒ (d|c) ⇒ (d ≤ c)

Two numbers are relatively prime if their GCD is one.
If a, b, q, r are non-negative integers such that a = bq + r, then the

gcd(a, b) = gcd(b, r).
If a, b ∈ Z and gcd(a, b) = 1 then (∃α, β ∈ Z) [1 = αa+ βb]
The corollary of the above equation is that if a, b ∈ Z, then

(∃α, β ∈ Z) [gcd(a, b) = αa+ βb]
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5 .7 Modular Arithmetic
Fix m ≥ 2(m ∈ Z) and if a, b ∈ Z, then a is congruent to b mod m, a ≡ b(
mod m), if and only if m|(a− b) and ∃k ∈ Z such that a− b = mk ⇒ a =
b+mk.
1. If a ≡ b( mod m) ⇒ (a = q1m + r) ∧ (b = q2m + r). In other words, a
and b have the same remainder after dividing by m.
2. If a = b ⇒ a ≡ b( mod m)

3. If a ≡ b( mod m) and a, b ∈ {0, 1, 2, · · · ,m} ⇒ a = b.
4. a ≡ a( mod m)

5. a ≡ b( mod m) ⇒ b ≡ a( mod m)

6. a ≡ b( mod m) ∧ b ≡ c( mod m) ⇒ a ≡ c( mod m)

7. a ≡ b( mod m) ⇒ (a+ c) ≡ (b+ c)( mod m) ∧ (ac) ≡ (bc)( mod m)

8. ac ≡ bc( mod m) ∧ gcd(c,m) = 1 ⇒ a ≡ b( mod m)

9. gcd(a,m) = 1 ⇒ (∃x ∈ Z)[ax ≡ 1( mod m)], and x is called a
multiplicative inverse of a mod m.

5 .7.1 The Space Zm

Let m = 11,Z11 = {x( mod 11)|x ∈ Z} which is equivalent to
{[0], [1], [2], · · · , [10]}. Each box is [x] = {k ∈ Z|k ≡ x( mod m)}. These
are called equivalence rings.

5 .8 Dirichlet’s Approximation Theorem
For every irrational number α, there are infinitely many rational numbers p

q

such that
∣∣∣α− p

q

∣∣∣ < 1
q2

.
Lemma: For any integer n ≥ 1 there is a rational number p

q
such that∣∣∣α− p

q

∣∣∣ < 1
nq

where 1 ≤ q ≤ n.

6 Graph Theory
A graph can be defined by letting V be a finite, non-empty set of nodes and
E be a set of edges. The pair of sets forms a graph.

In directed graphs we care about the direction of the nodes, and the order
of the pairs in E matter.

In undirected graphs order does not matter.
Multigraphs are graphs that allow several edges between the same two

nodes.

A simple graph is defined as an undirected graph with no loops and no
multiple edges.

If a graph is undirected, then the total degree of the vertices is equal to
twice the edges, therefore there must be an even sum of degrees.

We also have out degree and in degrees.
A graph is called bipartite if it can be written as V = V1 ∪ V2 where

V1 ∩ V2 = ∅, and every edge is of the form {a, b} ∈ G ∧ a ∈ V1 ∧ b ∈ V2.
A complete bipartite graph has every node in V1 adjacent to every node

in V2.
If we have a graph, then a proper coloring of the graph allows that each

adjacent node be a different color.
The minimum number of colors to properly color a graph is called its

chromatic number. A graph is bipartite if its chromatic number is 2.
We can express graphs as adjacency matrices.
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