
APPM 4560 Lab One

Zoe Farmer

February 26, 2024

Note, all code/algorithms are also in Appendix A in full.

1 Part 1: Simulating Random Permutations
In what follows n ≥ 1 is a given integer. A permutation of the elements in the set {1, . . . , n} is any
ordered list of these elements where no element appears repeated.

More generally, there are n! permutations of the elements in the set {1, . . . , n}. Choosing one
at random is a random permutation, any of which have a 1/n! chance to be selected.

Here’s a simple way to generate a random permutation of the set.
• Simulate i.i.d. Uniform(0, 1) random variables U1, . . . , Un

• Associate with these the random function f : {1, . . . , n} → {1, . . . , n} defined as f(i) =
{j : Uj ≤ Ui}.

• The random permutation is then σ ⇒ (f(1), . . . , f(n)).

1.1 Questions

1. Use the above to design an algorithm that produces a random permutation. The input
should be some integer n ≥ 1, and the outpu tis a random permutation of the elements in the
aforementioned set. Assume you can simulate any number of i.i.d. uniform random variables
in the interval (0, 1).

def permute(n):
u_1, ..., u_n = Unif(0, 1)
permuted = []
for i in 1:size
permuted.append(|{u_i <= u_j; j in [0, n]}|)
return permuted
def random_permutation(size: int) -> np.ndarray:

random_unif = np.random.random(size=size)
permuted_set = np.zeros(size)
for i, x in enumerate(random_unif):

permuted_set[i] = len(random_unif[x <= random_unif])
return permuted_set

Let n = 7, σ = (6, 7, 2, 5, 1, 4, 3), and m = 6000.
2. Let X be the number of times that the permutation σ is observed in m runs of your algorithm.

What’s the distribution of X? What’s the expected value of X? Explain.

1

Lab One Zoe Farmer

Any given σ has a 1/n! chance of being selected. Therefore the odds of this being selected is
1/n!. This means that X ∼ Binomial(6000, 1/7!). The expected value here is simply n · p,
or 1.190476, since each trial has 1/n! chance of being a "success", and we’re running 6000 of
them.

3. Let Y be the random variable that counts the number of times you need to run your algorithm
until seeing the permutation σ for the first time. What’s the distribution of Y ? What’s the
expected value of Y ? Explain.

Y ∼ Geometric(1/n!), since each trial is independent and we’re interested in how many are
required until we see one success. This means that we get a pmf of (1− p)k−1 p, where p in
this case is equal to 1/n!. This has expected value 1/p, or n! = 5040.

Let k = 2000.
4. Using your algorithm to obtain k independent realizations of X and obtain the histogram

associated with these. How does the resulting histogram compare to the theoretical histogram
of X. Explain. Display the histogram and the theoretical distribution on the same plot. Make
sure to comment on any expected or unexpected behavior.

Figure 1: Distribution of X

In Figure 1 we can see that the theoretical distribution of X matches the simulated values
almost perfectly. This makes sense, and we would predict this to be the case. It’s interesting
that the simulated number of zero elements is lower than our distribution predicts, but that
just goes to show the issues with simulated distributions.

5. Use your algorithm to obtain k independent realizations of Y and obtain the histogram

APPM4560 - Markov Processes 2 Manual Lladser

Lab One Zoe Farmer

associated with these. How does the resulting histogram compare to the theoretical histogram
of Y . Explain. Display the histogram and the theoretical distribution on the same plot. Make
sure to comment on any expected or unexpected behavior.

Figure 2: Distribution of Y

In Figure 2 we see that (as before with the distribution of X) the theoretical distribution of
Y matches our theory almost perfectly. There are some slight imperfections in the simulated
values that lead to some mis-matched values, however on the whole these values are very
close.

2 Part 2: Comparing Performance of Retrieving Algorithms
Imagine you have an oracle that always answers the truth to a YES/NO question. Suppose also you
have a database with n entries and that your goal is to retrieve a special entry by asking questions
to the oracle. Assume the database is a permutation of the elements {1, . . . , n} and that you want
to retrieve the position where the element 1 is located.

Here are two methods:
• Iterate and ask about each item
• Binary tree and ask about each half.
Let QA denote the total number of questions made to the oracle to determine the position of 1

using method A. Define QB similarly.

APPM4560 - Markov Processes 3 Manual Lladser

Lab One Zoe Farmer

2.1 Questions

1. Determine E (QA) explicitly. Justify with mathybits.

E (QA) = (n/2) + 1. This can be seen by the following. Assume that for any given random
permutation of our set S, the value that we’re looking for could be at any position, with
uniform distribution. Therefore, the average position is at the halfway mark. This means
that on average, if an infinite number of trials occur with our value placed at a uniformly
distributed random location location for each trial, the average point will be (n/2)+ 1. Note,
it’s not simply n/2, as we always have to ask at least one question.

2. Fix n = 9 and use your algorithm in the first part to simulate ten-thousand times the random
variable QA. Determine the sample average of your simulations. Repeat with n = 21, n = 36,
and n = 69.

data = np.zeros(m)
for i, n in enumerate(n_vals):

for j in range(m):
data[j] = np.where(random_permutation(n) == 1)[0][0] + 1

print(n, data.mean())

3. How do the averages compare to your answer in part 1? Summarize your data in a table.
Comment on any expected and/or expected behavior.

n E(QA) Average Iterations
9 4.5 5.00357
21 10.5 10.98759
36 18 18.48431
69 34.5 34.93481

Table 1: Method A Simulated Runtime

We see that this is almost exactly what we predicted. Interestingly, our values are higher
than we’d expect, but this may be a result of the simulation process and errors that occur as
a result.

4. What should E (QB) be approximately when n is large?

E (Qb) = log2(n). This can be intuitively inferred from realizing that we are constructing a
binary tree with depth log2(n) when we examine the question space.

5. Repeat 2 above but with QB instead of QA.

APPM4560 - Markov Processes 4 Manual Lladser

Lab One Zoe Farmer

def methodB(p: np.ndarray, v: int):
x0 = 0
x1 = len(p)
count = 0
while True:

if len(p[x0:x1]) == 1:
break

count += 1
m = x0 + int((x1 - x0) / 2)
left = p[x0:m]
right = p[m:x1]
if v in left:

x1 = m
else:

x0 = m
return count

Method B Simulation
data = np.zeros(m)
for i, n in enumerate(n_vals):

for j in range(m):
data[j] = methodB(random_permutation(n), 1)

print(n, data.mean())

6. How do the obtained averages compare to your approximation in part 4? Summarize in a
table and comment.

n E(QB) Average Iterations
9 3.1699 3.22071
21 4.3923 4.47676
36 5.1699 5.22242
69 6.1085 6.14644

Table 2: Method A Simulated Runtime

We see that theory here matches our simulated values. This is good. This is exactly as we
expected. As the description points out, this is because of the binary tree theory.

APPM4560 - Markov Processes 5 Manual Lladser

Lab One Zoe Farmer

A Code

A.1 Part 1

#!/usr/bin/env python3.5

import math
import numpy as np
import matplotlib.pyplot as plt
import seaborn
import itertools
import tqdm

def permute(n):
u_1, ..., u_n = Unif(0, 1)
permuted = []
for i in 1:size
permuted.append(|{u_i <= u_j; j in [0, n]}|)
return permuted
def random_permutation(size: int) -> np.ndarray:

random_unif = np.random.random(size=size)
permuted_set = np.zeros(size)
for i, x in enumerate(random_unif):

permuted_set[i] = len(random_unif[x <= random_unif])
return permuted_set

print(random_permutation(3))
#>> [3. 1. 2.]
print(random_permutation(5))
#>> [2. 1. 3. 5. 4.]
print(random_permutation(10))
#>> [4. 8. 10. 1. 6. 2. 9. 7. 3. 5.]
print(random_permutation(20))
#>> [17. 11. 7. 14. 16. 2. 8. 4. 13. 18. 1. 15. 6. 3. 9.
10. 19. 12. 20. 5.]

n = 7
m = 6000
k = 2000
s = np.array([6, 7, 2, 5, 1, 4, 3])
p = 1 / math.factorial(n)

data = []
for i in tqdm.tqdm(range(k)):

count = 0
for j in range(m):

APPM4560 - Markov Processes 6 Manual Lladser

Lab One Zoe Farmer

pp = random_permutation(n)
if (pp == s).all():

count += 1
data.append(count)

hist, bin_edges = np.histogram(data, bins=list(range(11)), density=True)
x = np.arange(0, 11, 1, dtype=int)
binomial = np.zeros(len(x))
for i, k in enumerate(x):

binomial[i] = ((math.factorial(m) / (math.factorial(k) *
math.factorial(m - k))) * p**k * (1 - p)**(m - k))

plotting
plt.figure()
plt.plot(x, binomial, label='Binomial({}, {:0.08})'.format(m, p))
plt.bar(bin_edges[:-1], hist, width=bin_edges[1] - bin_edges[0],

alpha=0.5, label='Experimental Values')
plt.ylabel('Frequency')
plt.xlabel(r'Count of σ')
plt.legend(loc=0)
plt.savefig('distx.png')

n = 7
m = 6000
k = 2000
s = np.array([6, 7, 2, 5, 1, 4, 3])
p = 1 / math.factorial(n)

data = []
for i in tqdm.tqdm(range(k)):

count = 0
while True:

count += 1
pp = random_permutation(n)
if (pp == s).all():

break
data.append(count)

hist, bin_edges = np.histogram(data, bins=20, density=True)
x = np.arange(0, int(1e5 / 2), 1, dtype=int)
geom = np.zeros(len(x))
for i, k in enumerate(x):

geom[i] = (1 - p)**(k - 1) * p
plotting
plt.figure()
plt.plot(x, geom, label='Geometric({:0.08})'.format(p))
plt.bar(bin_edges[:-1], hist, width=bin_edges[1] - bin_edges[0],

alpha=0.5, label='Experimental Values')
plt.ylabel('Frequency')
plt.xlabel('Number of Trials')

APPM4560 - Markov Processes 7 Manual Lladser

Lab One Zoe Farmer

plt.legend(loc=0)
plt.savefig('disty.png')

A.2 Part 2

#!/usr/bin/env python3.5

import math
import numpy as np
import matplotlib.pyplot as plt
import seaborn
import itertools
import tqdm

def random_permutation(size: int) -> np.ndarray:
random_unif = np.random.random(size=size)
permuted_set = np.zeros(size, dtype=int)
for i, x in enumerate(random_unif):

permuted_set[i] = len(random_unif[x <= random_unif])
return permuted_set

n_vals = [9, 21, 36, 69]
m = 100000

data = np.zeros(m)
for i, n in enumerate(n_vals):

for j in range(m):
data[j] = np.where(random_permutation(n) == 1)[0][0] + 1

print(n, data.mean())

print('--------')
def methodB(p: np.ndarray, v: int):

x0 = 0
x1 = len(p)
count = 0
while True:

if len(p[x0:x1]) == 1:
break

count += 1
m = x0 + int((x1 - x0) / 2)
left = p[x0:m]
right = p[m:x1]
if v in left:

x1 = m
else:

x0 = m
return count

APPM4560 - Markov Processes 8 Manual Lladser

Lab One Zoe Farmer

Method B Simulation
data = np.zeros(m)
for i, n in enumerate(n_vals):

for j in range(m):
data[j] = methodB(random_permutation(n), 1)

print(n, data.mean())

APPM4560 - Markov Processes 9 Manual Lladser

	Part 1: Simulating Random Permutations
	Questions

	Part 2: Comparing Performance of Retrieving Algorithms
	Questions

	Code
	Part 1
	Part 2

