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1 Matrices and Systems of Linear Equations
Up until this point we’ve been solving systems of linear equations through
fiddling with them (solving for different variables, etc.) until we get an answer.
Using matrices we can solve them a lot more effectively. Not only that, but any
process we use will turn the matrix into an equivalent system of equations, i.e.,
one that has the same solutions.

We can have systems of linear equations represented in matrices, and if all
equations are equal to zero, the system is homogeneous. The solution is defined
as the point in Rn whose coordinates solve the system of equations.

We have a couple of methods to solve systems of linear equations when they
are in matrix form, but first we need to define a couple different terms and
operations.

1 .1 Augmented Matrix
An augmented matrix is where two different matrices are combined to form a
new matrix.

[A|b] =


A11 A12 · · · A1m b1
A21 A22 · · · A2m b2

...
...

. . .
...

...
An1 An2 · · · Anm bn

 (1)

This is usually used to show the coefficients of the variables in a system of
equations as well as the constants they are equal to.

1 .2 Elementary Row Operations
We have a couple of different options to manipulate augmented matrices, which
are as follows.

• Interchange row i and i

R∗
i = Rj , R

∗
j = Ri

• Multiply row i by a constant.

R∗
i = cRi

• Leaving j untouched, add to i a constant times j.

R∗
i = Ri + cRj

These are handy when dealing with matrices and trying to obtain Reduced
Row Echelon Form (1 .6).
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1 .3 Gaussian Elimination
Our first method for solving matrices is to use Gaussian Elimination.

Our end goal with this strategy is to get to an triangular matrix or triangular
form, which is easy to solve through back substitution. 1 2 1 2

0 2 −1 3
0 0 5

2 3


The corresponding linear system has vector form

Ux = c

The coefficient matrix U is upper triangular.
The method of using solely Elementary Row Operation 1 is called regular

Gaussian Elimination. A square matrix A is called regular if the algorithm
successfully reduces it to upper triangular form U with all non-zero pivots.

1 .4 Pivoting and Permutations
Besides the above Elementary Row Operations, we also have pivoting at our
disposal (which if you’ll notice, is the same as Elementary Row Operation 1).

1 .4.1 Pivoting

Definition 1. A square matrix is called nonsingular if it can be reduced to
upper triangular form with all non-zero elements on the diagonal, the pivots, by
elementary row operations.

A singular square matrix cannot be reduced by such operations.

Theorem 1. A linear system Ax = b has a unique solution for every choice of
right hand side b if and only if its coefficient matrix A is square and nonsingular.

1 .4.2 Permutations

Definition 2. A Permutation Matrix is a matrix obtained from the identity
matrix by any combination of row interchanges.

Essentially just a method to change matrices.
There are six different 3× 3 permutation matrices:1 0 0

0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0


0 1 0
1 0 0
0 0 1

0 0 1
0 1 0
1 0 0

1 0 0
0 0 1
0 1 0

 (2)
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1 .4.3 Permuted LU Factorization

Because we are also allowed pivoting in Gaussian Elimination, we can get the
permuted LU Factorization formula:

PA = LU

Theorem 2. Let A be an n × n matrix. Then the following conditions are
equivalent:
1. A is non-singular.
2. A has n non-zero pivots.
3. A admits a permuted LU factorization: PA = LU .

1 .4.4 Factorization of Symmetric Matrices

Definition 3. A square matrix is called symmetric if it equals its own transpose.
A = AT . Any symmetric matrix A is regular if and only if it can be factored as

A = LDLT

1 .4.5 Pivoting Strategies

There are a couple strategies we can use to ensure that both our solutions are
good, and that our relative error is minimal.

Partial Pivoting says that at each stage we should use the largest (in absolute
value) element as the pivot, even if the diagonal element is nonzero. This helps
suppress round-off errors.

Full Pivoting lets us also exchange columns so that the greatest values are
closes to the upper left.

1 .5 Elementary Matrices
Definition 4. The elementary matrix E associated with an elementary row
operation for m rowed matrices is the matrix obtained by applying the row
operation to the m×m identity matrix Im.

In other words, if we were to (for example), take our Identity Matrix I, add
two times the first row to the second, and then multiply it by our original matrix,
it’s the same as the elementary row operation by itself.

These are very important for LU decomposition.

1 .5.1 LU Decomposition

Theorem 3. A Matrix A is regular if and only if it can be factored

A = LU

Where L is a special lower triangular, having all ones on the diagonal, and U is
an upper triangular matrix with nonzero diagonal entries.
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In general to find the LU decomposition, apply the regular Gaussian Elimination
to reduce A to its upper triangular form, and fill in the identity matrix with
values used (elementary matrix). These two matrices are the Upper and Lower
matrices.

1 .5.2 Forward and Back Substitution

Once we have LU decomposition, we can solve the system.
1. Solve the Lower system:

Lc = b

with Forward Substitution.
2. Solve the resulting Upper system:

Ux = c

with Back Substitution.

1 .6 Reduced Row Echelon Form
When dealing with systems of linear equations in augmented matrix form we
need to get it to a solution, which can be found with Reduced Row Echelon
Form (RREF). This form looks similar to the following.

[A|b] =

 1 0 0 b1
0 1 0 b2
0 0 1 b3

 (3)

This can be characterized by the following:

• 0 rows are at the bottom.

• Leftmost non-zero entry is 1, also called the pivot (or leading 1).

• Each pivot is further to the right than the one above.

• Each pivot is the only non-zero entry in its column.

A less complete process gives us row echelon form, which allows for nonzero
entries are allowed above the pivot.

1 .7 Gauss Jordan Reduction
This procedure will let us solve any given matrix/linear system. The steps are
as follows.

1. Given a system Ax = b

2. Form augmented matrix [A|b]
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3. Transform to RREF (1 .6) using elementary row operations.

4. The linear matrix formed by this process has the same solutions as the
initial system, however it is much easier to solve.

1 .7.1 LDV Factorization

This sophisticated version of Gauss-Jordan elimination leads us to a more detailed
version of the LU factorization. Let D be the diagonal matrix having the same
diagonal entries as U . Let V be the special upper triangular matrix obtained
from U by dividing each row by its pivot.
Theorem 4. A matrix A is regular if and only if it admits a factorization

A = LDV

Theorem 5. A matrix A is nonsingular if and only if there is a permutation
matrix P such that

PA = LDV

where the matrices L,D, and V are the same as defined above.

1 .8 Existence and Uniqueness
If the RREF has a row that looks like:

[0, 0, 0, · · · , 0|k]

where k is a non-zero constant, then the system has no solutions. We call this
inconsistent.

If the system has one or more solutions, we call it consistent.
In order to be unique, the system needs to be consistent.
• If every column is a pivot, the there is only one solution (unique solution).

• Else If most columns are pivots, there are multiple solutions (possibly
infinite).

• Else the system is inconsistent.

1 .9 Superposition, Nonhomogeneous Principle, and RREF
For any nonhomogeneous linear system Ax = b, we can write the solutions as:

x = xh + xp

Where xh represents vectors in the set of homogeneous solutions, and xp is a
particular solution to the original equation.

We can use RREF to find xp, and then, using the same RREF with b
replaced by 0, find xh.

The rank of a matrix r equals the number of pivot columns in the RREF. If
r equals the number of variables, there is a unique solution. Otherwise if there
is less, then it is not unique.
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Definition 5. A square matrix of size n × n is nonsingular if and only if its
rank is equal to n.

Theorem 6. A homogeneous linear system Ax = 0 of m equations in n
unknowns has a non-trivial solution x ̸= 0 if and only if the rank of A is r < n.
If m < n the system always has a nontrivial solution. If m = n the system has
a nontrivial solution if and only if A is singular.

1 .10 Inverse of a Matrix
When given a system of equations like:{

x+ y = 1

4x+ 5y = 6

we can rewrite it in the form:[
1 1
4 5

] [
x
y

]
=

[
1
6

]
For this sort of matrix, we can find the inverse which is defined as the matrix
that, when multiplied with the original, equals an Identity Matrix. In other
words:

A−1A = AA−1 = I

1 .10.1 Properties

• (A−1)
−1

= A

• A and B are invertible matrices of the same order if (AB) = A−1B−1

• If A is invertible, then so is AT and
(
A−1

)T
=

(
AT

)−1

1 .10.2 Inverse Matrix by RREF

For an n× n matrix A, the following procedure either produces A−1, or proves
that it’s impossible.

1. Form the n× 2n matrix M = [A|I]

2. Transform M into its RREF, R.

3. If the first n columns produce an Identity Matrix, then the last n are its
inverse. Otherwise A is not invertible.
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1 .11 Invertibility and Solutions
The matrix vector equation Ax = b where A is an n× n matrix has:

• A unique solution x = A−1b if and only if A is invertible.

• Either no solutions or infinitely many solutions if A is not invertible.

For the homogeneous equation Ax = 0, there is always one solution, x = 0
called the trivial solution.

Let A be an n× n matrix. The following statements apply.

• A is an invertible matrix.

• AT is an invertible matrix.

• A is row equivalent to In.

• A has n pivot columns.

• The equation Ax = 0 has only the trivial solution, x = 0.

• The equation Ax = 0 has a unique solution for every b in Rn.

1 .12 Determinants and Cramer’s Rule
The determinant of a square matrix is a scalar number associated with that
matrix. These are very important.

1 .12.1 2× 2 Matrix

To find the determinant of a 2 × 2 matrix, the determinant is the diagonal
products subtracted. This process is demonstrated below.

A =

[
a11 a12
a21 a22

]
|A| = a22 · a11 − a12 · a21

(4)

1 .12.2 Definitions

Every element of a n× n matrix has an associated minor and cofactor.

• Minor → A (n− 1)× (n− 1) matrix obtained by deleting the ith row and
jth column of A.

• Cofactor → The scalar Cij = (C − 1)i+j |Mij |

APPM 3310 10 Beylkin
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1 .12.3 Recursive Method of an n× n matrix A

We can now determine a recursive method for any n× n matrix.
Using the definitions declared above, we use the recursive method that

follows.

|A| =
n∑

j=1

aijCij (5)

Find j and then finish with the rules for the 2 × 2 matrix defined above in
(1 .12.1).

1 .12.4 Row Operations and Determinants

Let A be square.

• If two rows of A are exchanged to get B, then |B| = −|A|.

• If one row of A is multiplied by a constant c, and then added to another
row to get B, then |A| = |B|.

• If one row of A is multiplied by a constant c, then |B| = c|A|.

• If |A| = 0, A is called singular.

For an n× n A and B, the determinant |AB| is given by |A||B|.

1 .12.5 Properties of Determinants

• If two rows of A are interchanged to equal B, then

|B| = −|A|

• If one row of A is multiplied by a constant k, and then added to another
row to produce matrix B, then

|B| = |A|

• If one row of A is multiplied by k to produce matrix B, then

|B| = k|A|

• If |AB| = 0, then either |A| or |B| must be zero.

• |AT | = A

• If |A| ̸= 0, then |A−1| = 1
|A| .
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• If A is an upper or lower triangle matrix1, then the determinant is the
product of the diagonals.

• If one row or column consists of only zeros, then |A| = 0.

• If two rows or columns are equal, then |A| = 0.

• A is invertible.

• AT is also invertible.

• A has n pivot columns.

• |A| ̸= 0

• If |A| = 0 it is called singular, otherwise it is nonsingular.

1 .12.6 Cramer’s Rule

For the n× n matrix A with |A| ̸= 0, denote by Ai the matrix obtained from A
by replacing its ith column with the column vector b. Then the ith component
of the solution of the system is given by:

xi =
|Ai|
|A|

(6)

2 Vector Spaces and Subspaces
A vector space V is a non-empty collection of elements that we call vectors, for
which we can define the operation of vector addition and scalar multiplication:

1. Addition: x+ y

2. Scalars: cx where c is a constant.

that satisfy the following properties:

1. x+ y ∈ V

2. cx ∈ V

which can be condensed into a single equation:

cx+ dy ∈ V

which is called closure under linear combinations.
1A triangle matrix is one where either the lower or upper half is zero, e.g.
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.
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2 .1 Properties
We have the properties from before, as well as new ones.

1. x+ y ∈ V ← Addition

2. cx ∈ V ← Scalar Multiplication

3. x+ 0 = x← Zero Element

4. x+ (−x) = (−x) + x = 0← Additive Inverse

5. (x+ y) + z = x+ (y + z)← Associative Property

6. x+ y = y + x← Commutativity

7. 1 · x = x← Identity

8. c(x+ y) = cx+ cy← Distributive Property

9. (c+ d)x = cx+ dx← Distributive Property

10. c(dx) = (cd)x← Associativity

2 .2 Vector Function Space
A vector function space is just a unique vector space where the elements of the
space are functions.

Note, the solutions to linear and homogeneous differential equations form
vector spaces.

2 .2.1 Closure under Linear Combination

cx+ dy ∈ V whenever x,y ∈ V and c, d ∈ R (7)

2 .2.2 Prominent Vector Function Spaces

• R2 → The space of all ordered pairs.

• R3 → The space of all ordered triples.

• Rn → The space of all ordered n-tuples.

• P→ The space of all polynomials.

• Pn → The space of all polynomials with degree ≤ n.

• Mmn → The space of all m× n matrices.

• C(I) → The space of all continuous functions on the interval I (open,
closed, finite, and infinite).

• Cn(I)→ Same as above, except with n continuous derivatives.

• Cn → The space of all ordered n-tuples of complex numbers.
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2 .3 Vector Subspaces
Theorem: A non-empty subset W of a vector space V is a subspace of V if it
is closed under addition and scalar multiplication:

• If u,v ∈W, than u+V ∈W.

• If u ∈W and c ∈ R, than cu ∈W.

We can rewrite this to be more efficient:

If u,v ∈W and a, b ∈ R, than au+ bv ∈W. (8)

Note, vector space does not imply subspace. All subspaces are vector spaces,
but not all vector spaces are subspaces.

To determine if it is a subspace, we check for closure with the above theorem.
There are only a couple subspaces for R2:

• The zero subspace {(0, 0)}.

• Lines passing through the origin.

• R2 itself.

We can call the zero and the set V themselves trivial subspaces, calling the
subspace of lines passing through the origin the only non-trivial subspace in R2.

We can classify R3 similarly:

• Trivial:

– Zero subspace
– R3

Non-Trivial

– Lines that contain the origin.
– Places that contain the origin.

2 .3.1 Examples

• The set of all even functions.

• The set of all solutions to y′′′ − y′′t+ y = 0.

• {P ∈ P;P (2) = P (3)}

3 Span, Basis and Dimension
Given one or more vectors in a vector space, we can create more vectors through
addition and scalar multiplication. These vectors that result from this process
are called linear combinations.
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3 .1 Span
The span of a set {v1,v2, . . . ,vn} of vectors in a vector space V, denoted by
Span{v1,v2, . . . ,vn} is the set of all linear combinations of the vectors.

3 .1.1 Example

For example, If u =

 3
2
0

 and v =

 0
2
2


Then we can write their span as

au+ bv = a

 3
2
0

+ b

 0
2
2

 =

 3a
2a+ 2b

2b


3 .2 Spanning Sets in Rn

A vector b in Rn is in Span{v1,v2, . . . ,vn} where {v1,v2, . . . ,vn} are vectors
in Rn, provided that there is at least one solution of the matrix-vector equation
Ax = b, where A is the matrix whose column vectors are {v1,v2, . . . ,vn}.

3 .3 Span Theorem
For a set of vectors {v1,v2, . . . ,vn} in vector space V, Span{v1,v2, . . . ,vn} is
subspace of V.

3 .4 Column Space
For any m × n matrix A, the column space, denoted Col A, is the span of the
column vectors of A, and is a subspace of Rn.

3 .5 Linear Independence
A set {v1,v2, . . . ,vn} of vectors in vector space V is linearly independent if no
vector of the set can be written as a linear combination of the others. Otherwise
it is linearly dependent.

This notion of linear independence also carries over to function spaces. A set
of vector functions {v1,v2, . . . ,vn} in a vector space V is linearly independent
on an interval I if for all t in I the only solution of

c1v1 + c2v2 + · · ·+ cnvn = 0

for (c1, c2, . . . , cn ∈ R) is ci = 0 for all i.
If for any value t0 of t there is any solution with ci ̸= 0, the vector functions

are linearly dependent.
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Example 1. The vectors

v1 =

 1
2
−1

 ,v2 =

0
3
1

 ,v3 =

−14
3


are linearly dependent because

v1 − 2v2 + v3 = 0

however the first two vectors are linearly independent because the only solution
to

c1v1 + c2v2 = 0

is c1 = c2 = 0.

3 .5.1 Testing for Linear Independence

1. (a) Put the system in matrix-vector form:

 ↑ ↑ · · · ↑
v1 v2 · · · vn

↓ ↓ · · · ↓




c1
c2
...
cn

 = 0

(b) Analyze Matrix:
The column vectors of A are linearly independent if and only if the
solution x = 0 is unique, which means ci = 0 for all i.
Any of the following also satisfy this condition for a unique solution:

• A is invertible.
• A has n pivot columns.
• |A| ̸= 0

2. Suppose we have a set of vectors v.

{v1,v2, . . . ,vn} ∈ Rn,dim(v) = m

Then the set v is linearly dependent if n > m where n is the number of
elements in v. Note, this cannot prove the opposite. It only goes one way.

 1
2
3

 ,

 4
5
6

 ,

 0
1
0

 ,

 1
−3
7

 Is dependent

3. Columns of A are linearly independent if and only if Ax = 0 has only the
trivial solutions of n.
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3 .5.2 Linear Independence of Functions

One way to check a set of functions is to consider them as a one dimensional
vector.

vi(t) = fn(t)

Another method is the Wronskian:

To find the Wronskian of functions f1, f2, . . . , fn on I :

W [f1, f2, . . . , fn] =


f1 f2 · · · rn
f

′

1 f
′

2 · · · r
′

n
...

...
. . .

...
fn−1
1 fn−1

2 · · · rn−1
n

 (9)

If W ̸= 0 for all t on the interval I, where f1, f2, . . . , fn are defined, then the
function space is a linearly independent set of functions on I.

3 .6 Basis of a Vector Space
The set {v1,v2, . . . ,vn} is a basis for vector space V provided that

• {v1,v2, . . . ,vn} is linearly independent.

• Span{v1,v2, . . . ,vn} = V

Theorem 7. Every basis of Rn consists of exactly n vectors. Furthermore, a
set of n vectors {v1, · · · ,vn ∈ Rn} is a basis iff the n×n matrix A = (v1 · · ·vn

is nonsingular: rank A = n
Suppose the vector space V has a basis v1, · · · ,vn. Then every other basis of

V has the same number of elements in it. This number is called the dimension
of V , and is written dimV = n.

Suppose V is an n-dimensional vector space, then
3. Every set of more than n elements of V is linearly dependent.
4. No set of less than n elements spans V .
5. A set of n elements forms a basis iff it spans V .
6. A set of n elements forms a basis iff it is linearly independent.

3 .6.1 Standard Basis for Rn

{e1, e2, . . . , en}
where

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1


(10)
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are the column vectors of the identity matrix In.

3 .6.2 Example

A vector space can have different bases.
The standard basis for Rn is:

{e1, e2} for e1 =

[
1
0

]
and e2

[
0
1

]
giving

{[
1
0

]
,

[
0
1

]}
But another basis for R2 is given by:{[

2
1

]
,

[
1
2

]}
3 .7 Dimension of the Column Space of a Matrix
Essentially, the number of vectors in a basis.

3 .7.1 Properties

• The pivot columns of a matrix A form a basis for Column A.

• The dimension of the column space, called the rank of A, is the number
of pivot columns in A.

rank A = dim(Col(A))

3 .7.2 Invertible Matrix Characterizations

Let A be an n× n matrix. The following are true.

• A is invertible.

• The column vector of A is linearly independent.

• Every column of A is a pivot column.

• The column vectors of A form a basis for Col(A).

• Rank A = n

3 .8 The Fundamental Matrix Subspaces
3 .8.1 Kernel and Range

The range of an m × n matrix A is the subspace rng ⊂ Rm spanned by its
columns. The kernel of A is the subspace kerA ⊂ Rn consisting of all vectors
which are annihilated by A, so

kerA = {z ∈ Rn|Az = 0} ⊂ Rn
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The range is also known as the column space or image of the matrix, while
the kernel is also called the null space.

At its core, the null space, or kernel is the set of solutions z to the homogeneous
system Az = 0.

If z1, · · · , zk are individual solutions to the same homogeneous linear system,
then so is any linear combination of c1z1 + · · ·+ ckzk.

As we’ve seen before, for inhomogeneous systems, once we know the homogeneous
solution, we can generalize with the inhomogeneous solution.

x = x∗ + z

This gives us a couple different properties that are equivalent.

Theorem 8. If A is an m×n matrix, then the following conditions are equivalent:

1. kerA = {0}, i.e. the homogeneous system Ax = 0 has the unique solution
x = 0.

2. rankA = n

3. The linear system Ax = b has no free variables.
4. The system Ax = b has a unique solution for each b ∈ rngA.
If A is a square, n× n matrix, then the following conditions are equivalent:
1. A is nonsingular
2. rankA = n

3. kerA = {0}
4. rngA = Rn

3 .8.2 The Superposition Principle

The Superposition Principle is the key to linearity. When we have homogeneous
solutions, we can generate new solutions by combining new solutions. For
inhomogeneous systems, the superposition principle allows us to combine solutions
corresponding to different inhomogeneities.

If we know the particular solutions of two inhomogeneous linear systems

Ax = b1, Ax = b2

that have the same coefficient matrix A, then we can combine the two systems

Ax = c1b1 + c2b2

which gives us the particular solution

x∗ = c1x
∗
1 + c2x

∗
2
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3 .8.3 Adjoint Systems, Cokernel, and Corange

The adjoint to a linear system Ax = b of m equations in n unknowns is the
linear system

ATy = f

consisting of n equations in m unkonwns y ∈ Rm with f ∈ Rn.
The corange of an m× n matrix A is the range of its transpose.

corngA = rngAT = {ATy|y ∈ Rm} ⊂ Rn

The cokernel, or left null space of A is the kernel of its transpose.

cokerA = kerAT = {w ∈ Rm|ATw = 0} ⊂ Rm

3 .8.4 The Fundamental Theorem of Linear Algebra

dimcorngA = dimrngA = rankA = rankAT = r

dimkerA = n− r

dimcokerA = m− r

4 Inner Products and Norms
The most basic example of an inner product is the familiar dot product

⟨v,w⟩ = v ·w = v1w1 + v2w2 + · · ·+ vnwn

It’s important to note here that this dot product is equal to the matrix
product of vT and w.

Any vector, when dotted with itself yields the sum of the squares of its entries,
which leads us to the Euclidean Norm, or the length of the vector, which is the
square root.

∥v∥ =
√
v · v

Theorem 9. An inner product on the real vector spave V is a pairing that takes
two vectors v,w ∈ V and produces a real number ⟨v,w⟩ ∈ R. The inner product
is required to satisfy the following three axioms for all u,v,w ∈ V and scalars
c, d ∈ R

• Bilinearity
⟨cu+ dv,w⟩ = c⟨u,w⟩+ d⟨v,w⟩
⟨u, cv + dw⟩ = c⟨u,v⟩+ d⟨u,w⟩

• Symmetry
⟨v,w⟩ = ⟨w,v⟩

• Positivity

⟨v,v⟩ > 0 whenever v ̸= 0 while ⟨0,0⟩ = 0
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Given an inner product, the associated norm of a vector v ∈ V is defined as
the positive square root of the inner product of the vector with itself.

4 .1 Inequalities
4 .1.1 The Cauchy-Schwarz Inequality

Any Euclidean dot product between two vectors can be expressed geometrically
as

v ·w = ∥v∥∥w∥ cos θ

Therefore, the absolute value of the dot product is bounded by the product
of the lengths of the vectors

|v ·w| ≤ ∥v∥∥w∥

Every inner product satisfies the Cauchy-Schwarz inequality.
Two elements v,w ∈ v of an inner product space V are called orthogonal if

their inner product vanishes: ⟨v,w⟩ = 0

4 .1.2 The Triangle Inequality

The norm associated with an inner product satisfies the triangle inequality

∥v +w∥ ≤ ∥v∥+ ∥w∥ for all v,w ∈ V

Equality holds iff v,w are parallel.

4 .2 Norms
Theorem 10. A norm on the vector space V assigns a real number ∥v∥ to each
vector v ∈ V subject to the following axioms for every v,w ∈ V and c ∈ R.

• Positivity
∥v∥ ≥ 0, (∥v∥ = 0⇔ v = 0)

• Homogeneity
∥cv∥ = |c|∥v∥

• Triangle Inequality

∥v +w∥ ≤ ∥v∥+ ∥w∥

4 .2.1 Unit Vectors

In any vector space V , the elements u ∈ V where ∥u∥ = 1 are very important
and are referred to as unit vectors.

If v ̸= 0 is any nonzero vector, then the vector u = v/∥v∥ obtained by
dividing v by its norm is a unit vector parallel to v.
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4 .2.2 Equivalence of Norms

Even though there are many different types of norms, in a finite dimensional
vector space they are all more or less equivalent.

Let ∥ · ∥1 and ∥ · ∥2 be any two norms on Rn. Then there exist positive
constants c∗, C∗ > 0 such that

c∗∥v∥1 ≤ ∥v∥2 ≤ C∗∥v∥1,∀v ∈ Rn

4 .3 Positive Definite Matrices
An n × n matrix K is called positive definite if it is symmetric, KT = K and
satisfies the positivity condition

xTKx > 0 for all 0 ̸= x ∈ Rn

This is sometimes denoted as K > 0. Any positive definite matrix is nonsingular.
Every inner product on Rn is given by

⟨x,y⟩ = xTKy for x,y ∈ Rn

Where K is a positive definite matrix as is defined above.
Given any symmetric matrix K, the homogeneous quadratic polynomial

q(x) = xTKx =

n∑
i,j=1

kijxixj

is known as a quadratic form on Rn. The quadratic form is called the positive
definite if

q(x) > 0 for all 0 ̸= x ∈ Rn

thus a quadratic form is positive definite iff its coefficient matrix is.

4 .3.1 Gram Matrices

Let V be an inner product space, and let v1, · · · ,vn ∈ V . The associated Gram
matrix

K =


⟨v1,v1⟩ ⟨v1,v2⟩ · · · ⟨v1,vn⟩
⟨v2,v1⟩ ⟨v2,v2⟩ · · · ⟨v2,vn⟩

...
...

. . .
...

⟨vn,v1⟩ ⟨vn,v2⟩ · · · ⟨vn,vn⟩


is the n × n matrix whose entries are the inner products between the selected
vector space elements.

Symmetry of the inner product implies symmetry of the Gram matrix:

kij = ⟨vi,vj⟩ = ⟨vj ,vi⟩ = kji

and hence KT = K.
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All Gram matrices are positive semi-definite. The Gram matrix is positive
definite iff v1, · · · ,vn are linearly independent. This leads us to more details
about a given m× n matrix A.

1. The n× n Gram matrix K = ATA is positive definite.
2. A has linearly independent columns.
3. rankA = n ≤ m

4. kerA = {0}
Suppose A is an m× n matrix with linearly independent columns. Suppose

C is any positive definite m × m matrix. Then the matrix K = ATCA is a
positive definite n× n matrix.

4 .3.2 Completing the Square

Gram matrices give us a virtually unlimited supply of positive definite matrices,
however we still need to determine how to figure out how to determine whether
or not a given matrix is positive definite.

A symmetric matrix is positive definite iff it is regular and has all positive
pivots.

In other words, a square matrix K is positive definite iff it can be factored
K = LDLT where L is a special lower triangular and D is diagonal with all
positive definite entries.

4 .3.3 The Cholesky Factorization

We know how to write any regular quadratic form as a linear combination of
squares. We can push this slightly further and deduce the Cholesky Factorization

K = LDLT = LSSTLT = MMT |M = LS

4 .4 Complex Vector Spaces
Remember that complex numbers are expressed in the form z = x + iy where
x, y ∈ R and i2 = −1.

For this we also need the complex conjugate. The complex conjugate of
z = x+ iy is z̄ = x− iy.

We can also define complex vector spaces and inner products, the only
difference is that the scalar entries are now complex scalars.

An Inner Product on the complex vector space V is a pairing that takes two
vectors, v,w ∈ V and produces a complex number ⟨v,w⟩ ∈ C subject to the
following requirements for u,v,w ∈ V and c, d ∈ C:

1. Sesquilinearity:

⟨cu+ dv,w⟩ = c ⟨u,w⟩+ d ⟨v,w⟩
⟨u, cv + dw⟩ = c ⟨u,v⟩+ d ⟨u,w⟩
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2. Conjugate Symmetry:
⟨v,w⟩ = ⟨w,v⟩

3. Positivity:
||v||2 = ⟨v,v⟩ ≥ 0 ∧ ⟨v,v⟩ = 0⇔ v = 0

The Cauchy-Schwarz inequality is also valid on any complex inner product
space.

5 Orthogonality
5 .1 Orthogonal Bases
Remember two elements are orthogonal if their inner product vanishes. In the
case of Euclidean space, this means that the two vectors are at right angles.

Theorem 11. A basis u1, · · · ,un of V is called orthogonal if ⟨ui,uj⟩ = 0 for
all i ̸= j. The basis is called orthonormal if, in addition, each vector has unit
length: ||ui|| = 1 for all i = 1, · · · , n.

Also, if u1, · · · ,un is an orthogonal basis of a vector space V , then the
normalized vectors ui = vi/||vi||, i = 1, · · · , n, form an orthonormal basis.

Associated with this theorem, if v1, · · · ,vk ∈ V are nonzero, mutually
orthogonal elements, so vi ̸= 0 and ⟨vi,vj⟩ = 0 for all i ̸= j, then they are
linearly independent.

Theorem 12. Suppose v1, · · · ,vn ∈ V are nonzero, mutually orthogonal elements
of an inner product space V . Then v1, · · · ,vn form an orthogonal basis for their
span W = span{v1, · · · ,vn} ⊂ V , which is therefore a subspace of dimension
n = dimW . In particular, if dimV = n, then v1, · · · ,vn form a orthogonal
basis for V .

5 .1.1 Computations in Orthogonal Bases

The advantage of an orthogonal or orthonormal base is that we can express
other elements as linear combinations of the base elements, in other words, find
their coordinates.

Theorem 13. Let u1, · · · ,un be an orthonormal basis for an inner product
space V . Then one can write any element v ∈ V as a linear combination in
which its coordinates

ci = ⟨v,ui⟩ , i = 1, · · · , n
are explicitly given as inner products. Moreover, its norm is the square root of
the sum of the squares of its orthonormal basis coordinates.

We also can say that if v1, · · · ,vn form an orthogonal basis, then the corresponding
coordinates of a vector are given by

ai =
⟨v,vi⟩
||vi||2
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5 .2 The Gram-Schmidt Process
Now we know that orthogonal and orthonormal bases are useful, we need to
determine how to construct them.

Let V be a finite-dimensional inner product space. We will construct the
basis elements one by one, and since there are no conditions on the first element
we can choose the first element of V , v1 = w1.

The second basis vector must be orthogonal to the first, which we attempt
to ensure by setting v2 = w2 − cv1 where c is a scalar to be determined. We
can expand ⟨v1,v2⟩ and determine that c = ⟨w2,v1⟩ /||v1||2.

We can extrapolate this process to all vectors in the space, giving us the
general Gram-Schmidt formula

vk = wk −
k−1∑
j=1

⟨wk,vj⟩
||vj||2

vj , k = 1, · · · , n

We also can say that every non-zero finite-dimensional inner product space
has an orthonormal basis. In fact, if the dimension is greater that 1, there are
infinitely many.

5 .2.1 Modifications of the Gram-Schmidt Process

We can modify the Gram-Schmidt process a little to gain additional benefit.
First step is to replace each orthogonal basis vector with its normalized

version: uj = vj/||vj||. This allows us to compute

rij = ⟨wj,ui⟩ , i = 1, · · · , j − 1

we obtain the next orthonormal basis vector with

rij =
√
||wj||2 − r21j − · · · − r2j−1,j

uj =
wj − r1ju1 − · · · − rj−1,juj−1

rjj

5 .3 Orthogonal Matrices
A square matrix Q is called an orthogonal matrix if it satisfies

QTQ = 1

This also implies that
Q−1 = QT

A matrix is orthogonal iff its columns form an orthonormal basis with respect
to the Euclidean dot product on Rn.

An orthogonal matrix has determinant detQ = ±1 and the product of two
orthogonal matrices is also orthogonal.
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5 .3.1 The QR Factorization

Any nonsingular matrix A can be factored, A = QR, into the product of an
orthogonal matrix Q and an upper triangular matrix R. The factorization is
unique if all the diagonal entries of R are assumed to be positive.

This strategy can be employed as an alternative to traditional Gaussian
elimination

Ax = b ≡ QRx = b ≡ Rx = QTb

We also can say that if we let v,w ∈ Rn with ||v|| = ||w||. Set u =
(v − w)/∥v − w∥ and let H = 1 − 2uuT be the corresponding elementary
reflection matrix. Then Hv = w and Hw = v.

In other words, what we’re doing is applying the Gram-Schmidt process to
each column vector of the original matrix, and then creating the upper triangle
matrix as an upper triangular Gram matrix.

A = [a1, · · · ,an]Q = [e1, · · · , en]R =


⟨e1,a1⟩ ⟨e1,a2⟩ · · · ⟨e1,an⟩

0 ⟨e2,a2⟩ · · · ⟨e2,an⟩
0 0 · · · ⟨e3,an⟩
...

...
. . .

...


5 .4 Orthogonal Polynomials
Orthogonal Polynomials can be very useful in functions spaces. We’ll start by
discussing the Legendre Polynomials.

To construct the Legendre Polynomials, we start by constructing an orthonormal
basis for vector spaceP (n) of polynomials of degree ≤ n. This construction will
be based on the L2 inner product

⟨p,q⟩ =
∫ 1

−1

p(t)q(t) dt

We then apply the Gram-Schmidt orthogonalization process to the elementary,
but non-orthogonal monomial basis 1, t, t2, · · · , tn, and compute the next orthogonal
polynomials through recursive application of the Gram-Schmidt Process.

The resulting polynomials are known as the monic2 Legendre Polynomials.
However there is also a way to explicitly solve for the classical Legendre Polynomials.3

2Leading coefficient is equal to 1
3Classical Legendre Polynomials are those that are certain scalar multiples, namely

Pk(t) =
(2k)!

2k(k!)2
qk(t), k = 0, 1, 2, · · ·

and so also define a system of orthogonal polynomials. The multiple is fixed by the requirement
that

Pk(1) = 1
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The Rodrigues formula for the classical Legendre Polynomials is

Pk(t) =
1

2kk!

dk

dtk
(t2 − 1)

k
, ||Pk|| =

√
2

2k + 1
, k = 0, 1, 2, · · ·

If j ≤ k, then the polynomial Rj,k(t) is orthogonal to all polynomials of
degree ≤ j − 1.

The transformed Legendre Polynomials

P̃k(t) = Pk

(
2t− b− a

b− a

)
, ||P̃k|| =

√
b− a

2k + 1
, k = 0, 1, 2, · · ·

form an orthogonal system of polynomials with respect to the L2 inner product
on the interval [a, b].

5 .5 Orthogonal Projections and Least Squares
An Orthogonal Projection of a point onto a subspace is finding the nearest
distance between that point and the subspace.

A vector z ∈ V is said to be orthogonal to the subspace W ⊂ V if it is
orthogonal to every vector in W , so ⟨z,w⟩ = 0 for all winW .

The orthogonal projection of v onto the subspace W is the element w ∈W
that makes the difference z = v −w orthogonal to W .

Let u1, · · · ,un be an orthonormal basis for the subspace W ⊂ V . Then the
orthogonal projection of a vector v ∈ V onto W is

w = c1u1 + · · ·+ cnun where ci =
⟨v,ui⟩
||ui||2

, i = 1, · · · , n

5 .5.1 Orthogonal Least Squares

The orthogonal projection of a vector onto a subspace is also the least squares
vector, the closest point in the subspace.

Let W ⊂ V be a finite-dimensional subspace of an inner product space.
Given a vector v ∈ W , the closest point or least squares minimizer w ∈ W is
the same as the orthogonal projection of v onto W .

5 .5.2 Orthogonal Polynomials and Least Squares

The orthogonality of Legendre polynomials and their relatives helps us construct
least squares approximates.

We can write the least squares approximate as a linear combination of
Legendre Polynomials

p(t) = a0P0(t) + a1P1(t) + · · ·+ anPn(t) = a0 + a1t+ a2(
3

2
t2 − 1

2
) + · · ·
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The least squares coefficients can also be computed by the inner product
formula, giving us the Rodrigues formula:

ak =

〈
et,Pk

〉
||Pk||2

=
2k + 1

2

∫ 1

−1

etPk(t) dt

5 .6 Orthogonal Subspaces
We can extend the notion of orthogonailty from elements to subspaces.

Two subspaces W,Z ⊂ V are called orthogonal if every vector in W is
orthogonal to every vector in Z.

If w1, · · · ,wk span W and z1, · · · , zl span Z, then W and Z are orthogonal
subspaces if and only if ⟨wi, zj⟩ = 0 for all i = 1, · · · , k and j = 1, · · · , l.

The orthogonal complement to a subspace W ⊂ V , denoted W⊥ = {v ∈
V | ⟨v,w⟩ = 0 for all w ∈W}.

Suppose that W ⊂ V is a finite-dimensional subspace of an inner product
space. Then every vector v ∈ V can be uniquely decomposed into v = w + z
where w ∈W and z ∈W⊥.

If dim W = m and dim V = n, then dim W⊥ = n−m.
If W is a finite-dimensional subspace of an inner product space, then (W⊥)

⊥
=

W .

5 .6.1 Orthogonality of the Fundamental Matrix Subspaces and the
Fredholm Alternative

Let A be a real m × n matrix. Then its kernel and corange are orthogonal
complements as subspaces of Rn under the dot product, while its cokernel and
range are orthogonal complements in Rm, also under the dot product:

kerA = (corngA)⊥ ⊂ Rn, cokerA = (rngA)⊥ ⊂ Rm

The linear system Ax = b has a solution if and only if b is orthogonal to
the cokernel of A.

In other words, Ax = b has a solution (b ∈ Im(A)) if and only if for any y
such that ATy = 0,yTb = 0(b ∈ ker(AT )⊥.4

Multiplication by an m×n matrix A of rank r defines a one-to-one correspondence
between the r-dimensional subspaces corng A ⊂ Rn and rng A ⊂ Rm. Moreover,
if v1, · · · ,vr forms a basis of corng A then their images Av1, · · ·Avr form a basis
for rng A.

A compatible linear system Ax = b with b ∈ rngA = (cokerA)⊥ has
a unique solution w ∈ corngA satisfying Aw = b. The general solution is
x = w + z where z ∈ kerA. The particular solution w is distinguished by the
fact that it has the smallest Euclidean norm of all possible solutions: ||w|| ≤ ||x||
whenever Ax = b.

4This is the specific Fredholm Alternative
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6 Least Squares
Using Least Squares we can find the element in a subspace that is closest to a
given point.

When trying to solve this problem, it’s important to note that the goal is to
minimize the squared distance

∥v − b∥2 = ⟨v − b,v − b⟩ = ∥v∥2 − 2⟨v,b⟩+ ||b||2

over all possible v ∈ V .
In other words, Let v1, · · · ,vn form a basis for the subspace V ⊂ Rm. Given

b ∈ Rm, the closest point v∗ = x ∗1 v1 + · · ·+ x ∗n vn ∈ V is prescribed by the
solution x∗ = K−1f to the linear system Kx = f , where K and f are given by

1. K is a symmetric n× n Gram matrix formed by

kij = ⟨vi,vj⟩

2. f ∈ Rn formed by
fi = ⟨vi,b⟩

The distance between the point and the subspace is

d∗ = ∥v∗ − b∥ =
√
||b||2 − fTx∗

6 .1 Least Squares
A least squares solution to a linear system of equations Ax = b is a vector
x∗ ∈ Rn that minimizes the Euclidean norm ∥Ax− b∥.

If the system has a solution, then it is automatically the least squares
solution, therefore the concept of a least squares solution is only new when
the system doesn’t have a solution.

The least squares solution is unique if kerA = {0}, or if the columns of A
are linearly independent (rankA = n).

Assume kerA = {0}. Set K = ATA and f = ATb. Then the least squares
solution to the linear system Ax = b is the unique solution x∗ to the so called
normal equations

Kx = f ≡ (ATA)x = ATb

namely

x∗ = (ATA)−1ATb

and the least squares error is

∥Ax∗ − b∥2 = ∥b∥2 − fTx∗ = ∥b∥2 − bTA(ATA)−1ATb
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7 Linear Functions
Let V and W be real vector spaces. A function L : V →W is called linear if it
obeys two basic rules:

1. L[v +w] = L[v] + L[w]

2. L[cv] = cL[v]
for all v,w ∈ V and all scalars c.
Every linear function L : Rn → Rm is given by matrix multiplication L[v] =

Av where A is an m× n matrix.

7 .1 The Space of Linear Functions
Given the vector spaces V,W , we use L(V,W ) to denote the set of all linear
functions: L : V →W .

The dual space to a vector space V is defined as the vector space V ∗ =
L(V,R) consisting of all real-valued linear functions L : V → R.

Let V be a finite dimensional real inner product space. Then every linear
function L : V → R is given by an inner product with a fixed vector a ∈ V :

L[v] = ⟨a,v⟩

7 .2 Composition
Besides adding and multiplying by scalars, one can also compose linear functions.

Let V,W,Z be vector spaces. If L : V → W and M : W → Z are linear
functions, then the composite function M ◦L : V → Z, defined by (M ◦L)[v] =
M [L[v]] is linear.

7 .3 Inverses
Let L : V → W be a linear function. If M : W → V is a function such that
both compositions

L ◦M = IW ,M ◦ L = IV

are equal to the identity function, then we call M the inverse of L and write
M = L−1.

If it exists, the inverse of a linear function is also a linear function.

8 Linear Transformations
If we consider a linear function that maps n dimensional space to itself, we
can also consider that the function maps a point x ∈ Rn to its image point
L[x] = Ax, where A is its n × n representative. This can be referred to as a
linear transformation.

Most of the important classes of linear transformations already appear in
the two dimensional case. Every linear function L : R2 → R2 has the form
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L

(
x
y

)
=

(
ax+ by
cx+ dy

)
, where A =

(
a b
c d

)
is an arbitrary 2× 2 matrix.

8 .1 Change of Basis
Let L : V → W be a linear function. Suppose V has basis v1, · · · ,vn and W
has basis w1, · · · ,wm. We can write

v = x1v1 + · · ·+ xnvn ∈ V,w = y1w1 + · · ·+ ymwm ∈W

9 Eigenvalues and Eigenvectors
Let A be an n× n matrix. A scalar, λ is called an eigenvalue of A if there is a
non-zero vector v ̸= 0, called an eigenvector, such that

Av = λv

In other words, the matrix A stretches the vector v by a certain value, λ.
To find these values and vectors, we construct the equation:

(A− λI) = 0

Note, the scalar λ is an eigenvalue of the matrix A iff A − λI is singular
(rank < n). The corresponding eigenvectors are the nonzero solutions to the
eigenvalue question.

Also, a scalar λ is an eigenvalue of the matrix A iff λ is a solution to the
characteristic equation

det(A− λI) = 0

If A is a real matrix with a complex eigenvalue and corresponding complex
eigenvector, then the complex conjugate is also an eigenvalue.

9 .1 Basic Properties of Eigenvalues
If A is an n× n matrix, then its characteristic polynomial is

pA(λ) = det(A− λI) = cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0

An n×n matrix A has at least one, and at most n distinct complex eigenvalues.
The sum of the eigenvalues of a matrix equals its trace, while the product

equals its determinant.
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9 .2 Eigenvector Bases
If λ1, · · · , λk are distinct eigenvalues of the same matrix A, then the corresponding
eigenvectors v1, · · · ,vk are linearly independent.

And if the n × n real matrix A has n distinct real eigenvalues λ1, · · · , λn,
then the corresponding real eigenvectors form a basis of Rn. If A (which may
now be either a real or a complex matrix) has n distinct complex eigenvalues,
then the corresponding eigenvectors form a basis of Cn.

An eigenvalue λ of a matrix A is called complete if the corresponding eigenspace
Vλ = ker(A − λI) has the same dimension as its multiplicity. The matrix A is
complete if all its eigenvalues are.

An n× n real or complex matrix A is complete iff its eigenvectors span Cn.
In particular, any n× n matrix that has n distinct eigenvalues is complete.

9 .3 Diagonalization
A square matrix is called diagonalizable if there exists a nonsingular matrix S
and a diagonal matrix Λ = diag(λ1, · · · , λn) such that

S−1AS = Λ or A = SΛS−1

A matrix is complex diagonalizable iff it is complete. A matrix is real
diagonalizable iff it is complete and has all real eigenvalues.

9 .4 Eigenvalues of Symmetric Matrices
Let A = AT be a real symmetric n× n matrix. Then

1. All the eigenvalues of A are real.
2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.
3. There is an orthonomral basis of Rn consisting on n eigenvectors of A.
In particular, all symmetric matrices are complete.
A symmetric matrix K = KT is positive definite iff all of its eigenvalues are

strictly positive.
Let A = AT be an n×n symmetric matrix. Let v1, · · · ,vn be an orthogonal

eigenvector basis such that v1, · · · ,vr correspond to nonzero eigenvalues, while
vr+1, · · · ,vn are null eigenvectors corresponding to the zero eigenvalue (if any).
Then r = rank(A), the non-null eigenvectors form an orthogonal basis for
rng(A) = corng(A), while the null eigenvectors form an orthogonal basis for
ker(A) = coker(A).

9 .5 The Spectral Theorem
Let A be a real, symmetric matrix. Then there exists an orthogonal matrix Q
such that

A = QΛQ−1 = QΛQT
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10 Singular Values
The singular values of an m × n matrix A are the positive square roots σi =√
λi > 0, of the nonzero eigenvalues of the associated Gram matrix K = AT .

The corresponding eigenvectors of K are known as the singular vectors of A.
Any nonzero, real m×n matrix A of rank r > 0 can be factored A = PΣQT

into the product of an m× r matrix P with orthonormal columns, so PTP = I,
the r × r diagonal matrix Σ = diag(σ1, · · · , σr) that has the singular values of
A as its diagonal entries, and an r × n matrix QT with orthonormal rows, so
QTQ = I.

Given the singular value decomposition A = PΣQT , the columns of Q
form an orthonormal basis for for corng(A), while the columns of P form an
orthonormal basis for rng(A).

The condition number of a matrix is the ratio between its largest and smallest
singular values: K(A) = σ1/σ2.

The pseudoinverse of a nonzero m×n matrix with singular value decomposition
A = PΣQT is the n×m matrix A+ = QΣ−1PT .

Let A be an m× n matrix of rank n. Then A+ = (ATA)
−1

AT

Consider the linear system Ax = b. Let x∗ = A+b, where A+ is the
pseudoinverse of A. If ker A = {0}, then x∗ is the Euclidean least squares
solution to the linear system. If, more generally, ker A ̸= {0} then x∗ ∈ corng(A)
is the least squares solution of minimal Euclidean norm among all vectors that
minimize least squares error ∥Ax− b∥.

11 Incomplete Matrices
A Complex, square matrix U is called unitary if is satisfies U†U = I where
U† = UT denotes the Hermitian transpose where one first transposes and then
takes the complex conjugate of all the entries.

If two matrices are unitary, then so is their product.
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A Attachments
LATEXSource Code
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