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1 Intro to Statistics
We start with an introduction to histograms, assuming that the reader is familiar with the
absolute basic terminology of statistics. A histogram is just a way to display data similar
to a bar chart.

Unimodal Rise to a single peak and decline
Bimodal Two separate peaks
Multimodal Any number of peaks
Symmetric Right and left sides mirrored
Positively Skewed Data stretches to right
Negatively Skewed Data stretches to left

Table 1: Histogram Types

The relative frequency of a group of values is number of times the value occurs divided
by the number of observations, while the absolute frequency is the numerator.

1 .1 Measuring Data Location
The mean (average) is a useful way to measure the center of data. Where x̄ is the sample
mean and µ̄ is the population mean.

x̄ =
x1 + x2 + · · ·+ xn

n
=

(
1

n

) n∑
i=1

xi

We can also use the median (center) where again x̃ is the sample median and µ̃ is the
population median. The median divides data up into two equal parts, but this concept can
be extended to allow for quartiles and percentiles.

x̃ =

{
Single middle value
Average of two middle values

As well as the mode, which is the most frequent data point.
A trimmed mean is a compromise between the mean and median. With a trimmed mean

trims the ends in order to remove outliers.
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1 .2 Measuring Variability
We can measure variability of our data with a variety of different methods, for instance the
range is the difference between the largest data point and the smallest.

The sample variance (denoted s2) is given by

s2 =
Σ(xi − x̄)

2

n− 1
=

Sxx

n− 1

While the sample standard deviation is given by the square root of the variance,

s =
√
s2

2 Probability
An experiment is anything who’s outcome is uncertain. The sample space (S) of an
experiment, is the set of all possible outcomes for said experiment. An event is any subset of
outcomes contained in the sample space. Since events are subsets, we can pull in set theory
and the concepts associated.

One thing we can easily to determine the probability of any given event occurring is to
enumerate the number of ways possible for a given outcome to occur, and divide it by the
total number of ways the event can happen.

2 .1 Axioms of Probability

• For any event A, 0 ≤ P (A) ≤ 1.
• P (S) = 1.
• If A1, A2, A3, . . . is an infinite collection of disjoint events, then

P (A1 ∪A2 ∪A3 ∪ · · · ) =
∞∑
i=1

P (Ai)

• For any event A, if P (A) + P (A′) = 1, then P (A) = 1− P (A′).
• For any two events,

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• For any three events,

P (A ∪B ∪ C) =P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C)
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2 .2 Conditional Probability
We can condition the probability of events on the outcomes of other events. This uses the
notation P (A|B) where we say the conditional probability of A given that B has occurred.

For any two events A and B with P (B) > 0, the conditional probability of A given that
B has occurred is defined by

P (A|B) =
P (A ∩B)

P (B)

We also have a couple rules that apply.
1. The Multiplication Rule → P (A ∩B) = P (A|B) · P (B).
2. The Law of Total Probability
2.1. Let A1, . . . , Ak be mutually exclusive and exhaustive events. Then for any other event
B,

P (B) =P (B|A1)P (A1) + · · ·+ P (B|Ak)P (Ak)

=

k∑
i=1

P (B|Ai)P (Ai)

3. Bayes’ Theorem
3.1. Let A1, . . . , Ak be a collection of k mutually exclusive and exhaustive events with prior
probabilities P (Ai)(i = 1, 2, . . . , k). Then for any other event B for which P (B) > 0, the
posterior probability of Aj given that B has occurred is

P (Aj |B) =
P (Aj ∩B)

P (B)

=
P (B|Aj)P (Aj)∑k

i=1 P (B|Ai) · P (Ai)
j = 1, 2, . . . , k

2 .3 Independence
Two events A and B are independent if P (A|B) = P (A) and dependent otherwise, which
means that P (A ∩B) = P (A) · P (B).

3 Random Variables
For a given sample space S of some experiment, a random variable (rv) is any rule that
associates a number with each outcome in S. We usually use uppercase letters for random
variables (X,Y, Z) and lowercase letters for particular values (x, y, z).

We have discrete and continuous random variables, which are defined as the common
definition. However they differ in one respect, which is that with continuous random
variables no single point has positive probability, only intervals have probability.

3 .1 Probability Distributions for Discrete Random Variables
The probability mass function (pmf) of a discrete random variable is defined for every
number x by p(x) = P (X = x) = P (all s ∈ S : X(s) = x).
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The cumulative distribution function (cdf) F (x) of a discrete random variable X with
pmf p(x) is defined for every number x by

F (x) = P (X ≤ x) =
∑

y:y≤x

p(y)

For any number x, F (x) is the probability that the observed value of X will be at most x.

3 .2 Expected Values and Variance
Let X be a discrete random variable with set of possible values D and pmdf p(x). The
expected value, of mean of X, denoted E(X) or µX , or just µ is

E(X) = µX =
∑
x∈D

x · p(x)

This has some defining rules

E(aX + b) = a · E(X) + b

We can also calculate the variance and standard deviation, which are measures of spread
and distribution.

Let X have pmf p(x), and expected value µ. Then the variance of X, denoted by V (X),
or σ2

X , or just σ2 is

V (X) =
∑
D

(x− µ)
2 · p(x) = E[(X − µ2)]

The standard deviation of X is

σX =
√

σ2
X

We have a shortcut formula for σ2.

V (X) = σ2 =

[∑
D

x2 · p(x)

]
− µ2 = E(X2)− [E(X)]

2

And again, we have some rules.

σaX = |a| · σX , σX+b = σX

Let X be a continuous random variable. Then the probability distribution of X (pdf) is
such that for any two numbers a and b where a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

In essence, continuous random variables replace the Σ with a
∫

. Any pdf must be greater
than or equal to zero, and the area under the entire region must equal 1.

A continuous random variable X is said to have uniform distribution on [A,B] if the pdf
of X is
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f(x;A,B) =

{
1

B−A → A ≤ x ≤ B

0 → Otherwise

Expected value of continuous random variables is pretty much the same

µX = E(X) =

∫ ∞

−∞
x · f(x) dx

While the variance is

σ2
X = V (X) =

∫ ∞

−∞
(x− µ)

2 · f(x) dx = E[(X − µ)2] = E(X2)− [E(X)]2

The same properties apply, and the standard deviation remains σX =
√

V (X).

3 .3 Percentiles of Continuous Distributions
The nth percentile is defined as

p = F (η(p)) =

∫ η(p)

−∞
f(y) dy

4 Distributions of Random Variables
4 .1 Geometric and Bernoulli Random Variables
Any random variable whose only possible outcomes are 0 and 1 are called Bernoulli Random
Variables. For any Bernoulli Random Variable we can establish the pmf.

p(x) =

{
px(1− p)

1−x → x = 1, 2, 3, . . .

0 → Otherwise

E[X] = p

Var(X) = p (1− p)

Where p can be any value in [0, 1]. Depending on the value of p we get different members
of the Geometric Distribution. Therefore a Bernoulli Random Variable is the measure of
outcomes of binary experiments. It is a discrete variable that takes on values 0 or 1, with
π1 = p(X = 1). On the other hand, Geometric Random Variables measure the time (number
of trials) until a certain outcome occurs, where the pdf is given below.

p(x) =
{
(1− p)

k−1
p E[X] =

1

p

Var(X) =
1− p

p2
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4 .2 The Binomial Probability Distribution
There are many experiments that conform to the following requirements, which mark it as
a binomial experiment.
1. The experiment consists of a sequence of n smaller experiments call trials, where n is
fixed in advance of the experiment.
2. Each trial can result in one of the same two possible outcomes which we generally denote
by Success and Failure.
3. The trials are independent, so that the outcome of any particular trial does not influence
the outcome of any other trial.
4. The probability of Success from trial to trial is constant by which we denote p.

Therefore the binomial random variable X is defined as the number of Successes in n
trials. Since this depends on two factors, we write the pmf as

b(x;n, p) =

{(
n
x

)
px(1− p)

n−x → x = 0, 1, 2, 3, . . . , n

0 → Otherwise

E[X] = np

Var(X) = np (1− p)

If X → Bin(n, p), then E(X) = np, V (X) = np(1 − p) = npq, and σX =
√
npq where

q = 1− p.

4 .3 Hypergeometric Distribution
We need to make some initial assumptions to use this distribution.
1. The population consists of N elements. (A finite population)
2. Each element can be characterized as a Success of a Failure, and there are M successes
in the population.
3. A sample of n elements is selected without replacement in such a way that each subset
of size n is equally likely to be chosen.

Like the binomial probability distribution, X is the number of successes in the sample.

P (X = x) = h(x;n,M,N) =

(
M
x

)(
N−M
n−x

)(
N
n

)
The mean and variance of this distribution are

E(X) = n · M
N

V (X) =

(
N − n

N − 1

)
· n · M

N
·
(
1− M

N

)

4 .4 Negative Binomial Distribution
Again, we need to start with some assumptions.
1. The experiment consists of a sequence of independent trials.
2. Each trial can either result in Success of Failure.
3. The probability of Success is constant from trial to trial.
4. The experiment continues until a total of r successes have been observed.

The pmf of the negative binomial distribution with parameters r = the number of
Successes, and p = P (S) is
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nb(k; r, p) =

(
k + r − 1

k

)
· (1− p)rpk k = 0, 1, 2, . . .

The special case where r = 1 is called the geometric distribution. The mean and variance
are as follows

E(X) =
pr

1− p
V (X) =

pr

(1− p)2

4 .5 The Poisson Distribution
A discrete random variable X is said to have a Poisson Distribution with parameter λ (λ > 0)
if the pmf of X is

p(k;λ) =
λk

k!
e−λ k = 0, 1, 2, 3, . . .

Suppose that in the binomial pmf we let n → ∞ and p → 0 in such a way that np
approaches a value λ > 0. Then b(x;n, p) → p(x;λ).

The mean and variance of X are refreshingly easy for the Poisson Distribution.

E(X) = V (X) = λ

We mostly use the Poisson distribution to measure events that occur over time. The
structure of this distribution requires us to make some assumptions about the data being
collected.
1. There exists a parameter α > 0 such that for any short time interval of length ∆t, the
probability that exactly one occurs is α ·∆t+ o(∆t)
2. The probability of more than one event occurring during ∆t is o(∆t).
3. The number of events that occur during ∆t is independent of the number that occur prior
to this time interval.

We also can establish that Pk(t) = e−αt · (αt)k/k! so that the number of events during
a time interval of length t is a Poisson rv with parameter µ = αt.The expected number
of events during any such time interval is αt, so the expected number during a unit time
interval is α.

The occurrence of events over time as described in known as the Poisson Process.

4 .6 The Normal Distribution
A continuous random variable is said to have normal distribution with parameters µ and σ
if the pdf of X is

f(x;µ, σ) =
1

σ
√
2π

e
−(x−µ)2

2σ2

This is often written as X → N(µ, σ2).

APPM 4570 7 Hagar
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4 .6.1 The Standard Normal Distribution

If µ = 0 and σ = 1 this is defined as the standard normal distribution (denoted by Z) with
pdf

f(z; 0, 1) =
1√
2π

e−z2/2

Where the cdf is denoted by Φ(z).
We use tables to determine the values of these cdfs, which are used as reference for other

distributions.

4 .6.2 z Values

zα is the z value for which α of the area under the z curve lies to the right of zα.

4 .6.3 Non-Standard Normal Distributions

When we’re dealing with a nonstandard normal distribution, we can standardize to the
standard normal distribution with standardized variable Z = (X − µ)/α. This means that

P (a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
= Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
P (X ≤ a) = Φ

(
a− µ

σ

)
P (X ≥ b) = 1− Φ

(
b− µ

σ

)

4 .7 Exponential Distribution
This distribution is handy to model the distribution of lifetimes, mostly due to its memoryless
property. This means that the distribution remains the same regardless of what happened
prior.

f(x : λ) =

{
λe−λx → x ≥ 0

0 → Otherwise

Where we can calculate

µ =
1

λ
σ2 =

1

λ2

With cdf

F (x;λ) =

{
0 → x < 0

1− e−λx → x ≥ 0

APPM 4570 8 Hagar
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4 .8 The Gamma Distribution
We need to first discuss the Gamma Function. For α > 0, the gamma function Γ(α) is
defined by

Γ(α) =

∫ ∞

0

xα−1e−x dx

Where
1. For any α > 1, Γ(α) = (α− 1)Γ(α− 1)
2. For any positive integer n, Γ(n) = (n− 1)!
3. Γ(1/2) =

√
π.

Now we can define the distribution to be

f(x;α) =

{
xα−1e−x

Γ(α) → x ≥ 0

0 → Otherwise

A random variable is said to have Gamma Distribution if the pdf of X is

f(x;α, β) =

{
xα−1e−x/β

βαΓ(α) → x ≥ 0

0 → Otherwise

With mean and variance

E(X) = µ = αβ V (X) = σ2 = αβ2

And cdf of the standard gamma distribution

F (x;α) =

∫ x

0

yα−1e−y

Γ(α)
dy

4 .8.1 Chi-Squared

f(x; v) =

{
xv/2−1e−x/2

2v/2Γ(v/2)
→ x ≥ 0

0 → x < 0

4 .9 Weibull Distribution

f(x;α, β) =

{
α
βαx

α−1e−(x/β)α → x ≥ 0

0 → x < 0

With mean and variance

µ = βΓ(1 + 1/α) σ2 = β2
[
Γ(1 + 2/α)− (Γ(1 + 1/α))

2
]

And cdf

f(x;α, β) =

{
0 → x < 0

1− e−(x/β)α → x ≥ 0
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4 .10 Lognormal Distribution

f(x;µ, σ) =

{
e−[ln(x)−µ]2/(2σ2)

σx
√
2π

→ x ≥ 0

0 → x < 0

E(X) = eµ+σ2/2 V (X) = e2µ+σ
(
eσ

2

− 1
)

Since it has normal distribution it can be expressed in terms of the standard normal
distribution Z.

4 .11 Beta Distribution
f(x;α, β,A,B) = 1

B−A · Γ(α+β)
Γ(α)·Γ(β)

(
x−A
B−A

)α−1(
B−x
B−A

)β−1

→ A ≤ x ≤ B

0 → Otherwise

µ = A+ (B −A) · α

α+ β
σ2 =

(B −A)
2
αβ

(α+ β)
2
(α+ β + 1)

5 Functions of Random Variables
This is a relatively straightforward concept. If we have a function of a random variable, we
can express this as an inequality and solve for the cdf. Examples follow, and derivations left
to the reader.

Let X be a random variables with continuous distribution. Let Y = X2.

FY (y) = P (Y ≤ y)

= P
(
X2 ≤ y

)
= P

(
−√

y ≤ X2 ≤ √
y
)

= Fx(
√
y)− Fx(−

√
y)

Now differentiate to obtain fx

fY (y) =
1

2
√
y
[fX(

√
y) + fx(−

√
y)]

6 Joint Probability Distributions
A joint probability distribution is one of the form where

F (a, b) = P (X ≤ a, Y ≤ b) −∞ < a, b < ∞

For joint discrete random variables we simply sum the two sets together. With continuous
random variables we doubly integrate them together.

Two random variables are said to be independent if

APPM 4570 10 Hagar
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p(x, y) = pX(x) · pY (y)

To be honest, this concept is fairly straightforward. All joint distributions look the
same, save we have to represent their cdf with two or more integrals. The big trick here is
to DRAW A PICTURE FIRST. This will save most headaches.

To find the marginal distribution from a joint distribution, integrate (or sum) over the
opposite variable.

fX(x) =

∫
y

f(x, y) dy fY (y) =

∫
x

f(x, y) dx

6 .1 Covariance
The covariance between two variables is

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY )− µX · µY

6 .2 Correlation

pX,Y =
Cov(X,Y )

σX · σY

6 .3 Properties
Cov(aX + b, cY + d) = acCov(X,Y )

Corr(aX + b, cY + d) = sign(ac)Corr(XY )

−1 ≤ Corr(XY ) ≤ 1

6 .4 Sums of Independent Random Variables
We can determine the sum of two random variables accordingly. This process is called the
convolution of the two variables. The cumulative distribution function is given

FX+Y (a) = P {X + Y ≤ a}

=

∫∫
x+y≤a

fX(x)fY (y) dx dy

=

∫ ∞

−∞

∫ a−y

−∞
fX(x)fY (y) dx dy

=

∫ ∞

−∞
FX(a− y)fY (y) dy

If we differentiate, we obtain the probability mass function

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y) dy

We can apply this concept to a slew of identically distributed random variables.
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6 .5 Conditional Distributions
6 .5.1 Discrete

According to Bayes

P (E|F ) =
P (EF )

P (F )

If X and Y are discrete random variables we can continue this definition to find the
conditional probability mass function of X given Y .

pX|Y (x|y) = P {X = x|Y = y} =
p (x, y)

pY (y)

We see that the cumulative distribution function is also found

FX|Y (x|y) = P {X ≤ x|Y = y} =
∑
a≤x

pX|Y (a|y)

6 .5.2 Continuous

Extending the previous concepts we can apply Bayes’ notion of conditionality to continuous
random variables.

fX|Y (x|y) = f (x, y)

fY (y)

Using this we can define the generalized form to be

P {X ∈ A|Y = y} =

∫
A

fX|Y (x|y) dx

With corresponding cdf

FX|Y (a|y) ≡ P {X ≤ a|Y = y} =

∫ a

∞
fX|Y (x|y) dx

6 .6 Joint Probability Distribution of Functions of Random Variables
If X1 and X2 are two jointly continuous random variables with Y1, Y2 functions of X1 and
X2 we can define the pdf.

Y1 = g1(X1, X2)

Y2 = g2(X1, X2)

This works iff g1 and g2 can be solved for x1 and x2 in terms of y1 and y2, namely
x1 = h1(y1, y2) and x2 = h2(y1, y2), and iff g1, g2 are continuous. If this is the case we can
define the Jacobian as∣∣∣∣∣ ∂g1

∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
(
∂g1
∂x1

)(
∂g2
∂x2

)
−
(
∂g1
∂x2

)(
∂g2
∂x1

)
̸= 0

APPM 4570 12 Hagar
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Under these conditions it can be show that Y1 and Y2 are jointly continuous with density
given by

fY1Y2 (y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1

Where x1 = h1(y1, y2), x2 = h2(y1, y2).

7 Expectation
We’ve already defined expectation of a random variable, however we haven’t looked closely
at its properties.

7 .1 Expectation of Sums of Random Variables
If X and Y are random variables with joint distribution f(x, y) and a corresponding function
g(X,Y ) we can establish the expected value of g as

E [g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y)

E [g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy

We can extend this theorem to account for sums of random variables. If Xi is a finite
set, then

E [X0 +X1 + · · ·+Xi] = E[X0] + E[X1] + · · ·+ E[Xi]

8 Point Estimation
We can use point estimation to determine certain parameters about a set of data. θ is merely
an estimate for some parameter, based on given sample data.
1. Obtain Sample Data from each population under study.
2. Based on the sample data, estimate θ
3. Conclusions based on sample estimates.

Note, different samples produce different estimates, even if the same estimator is used.
This means that we are interested in determining how to find the best estimator with least
error. Error can be defined in a couple ways. The squared error is defined as (θ̂ − θ)

2
while

the mean squared error is defined as MSE = E[(θ̂ − θ)
2
]. If among two estimators one has

a smaller MSE than another, the one with a smaller MSE is better. Another good quality
is unbiasedness (E[θ̂] = θ), and another quality is small variance (V ar[θ̂]).

The standard error of an estimator is its σ. This roughly tells us how accurate our
estimation is.

8 .1 Moments
1. Equate sample characteristics to the corresponding population values.
2. Solve these equations for unknown parameters.
3. The solution formula is the estimator.
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For k = 1, 2, 3, . . . the kth population moment, or kth moment of the distribution f(x)
is E(Xk).

Therefore the kth sample moment is

1

n
·

n∑
i=1

Xk
i

This system for the most part assumes that any sample characteristic is indicative of the
population.

8 .2 Maximum Likelihood Estimators
To find the MSE, a few things need to be done. Let’s assume that we’re given a set of
observations with the same distribution with unknown pdf. First we need to find the joint
density function for all observations, which when the observations are independent is merely
their product. This joint distribution function is our likelihood function. We now need to
find the maximal value, by either taking its derivative and setting it equal to zero, or by
first taking the log and then deriving following by setting equal to zero.

9 Central Limit Theorem
Any estimator has its own probability distribution. This distribution is often referred to as
the sampling distribution of the estimator.σ is again referred to as the standard error of the
estimator. This leads to an interesting insight, that is X based on a large n tends to be
closer to µ than otherwise.

E(X) ≈ µ

V (X) ≈ σ2/n

Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and variance
σ2. If n is sufficiently large1, X has approximately a normal distribution with µX = µ and
σ2
X

= σ2/n. The larger n is, the better the approximation.

10 Intervals
The CLT tells us that as n increases, the sample mean is normally distributed. We can
normalize our sample mean.

Z =
X − µ

σ/
√
n

This allows us to define a confidence interval. We know

P

(
−1.96 <

X − µ

σ/
√
n

< 1.96

)
= 0.95

Which means that the 100(1− α)% confidence interval is defined as
1n > 40
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(
X − zα/2 ·

σ√
n
,X + zα/2 ·

σ√
n

)
This confidence interval tells us that if this experiment were to be performed again and

again, 95% of the time our newly calculated interval would contain the true population
mean.

We can replace the instance of σ (which is rarely known) with our sample standard
deviation, S.

10 .1 The t Distribution
When our n is less than 40, we need to use the t distribution, which has the exact same
normalization process, save we now call it a t distribution with n− 1 degrees of freedom.

Let tv denote the t distribution with degrees of freedom v.
1. Each tv curve is bell shaped and centered at 0.
2. Each tv curve is more spread out than the standard normal.
3. As v increases, the spread of tv decreases.
4. limv→∞ tv = z.

10 .2 One Sample t Confidence Interval
This confidence interval is defined as(

X − tα/2,n−1 ·
σ√
n
,X + tα/2,n−1 ·

σ√
n

)

10 .3 Confidence Intervals for Population Proportion
If we have a certain proportion that we know about a population we can emulate it with a
binomial random variable, and

σX =
√
np(1− p)

The natural estimator for p is p̂ = X/n, or the fraction of “successes” that we identify.
We know that p̂ has normal distribution, and that E(p̂) = P, σp̂ =

√
p(1− p)/n, therefore

our confidence interval is

p̂± zα/2

√
p̂(1− p̂)

n

10 .4 Confidence Intervals for Variance of a Normal Population
If we have our random sample again, then we also know that

(n− 1)S2

σ2
=

∑(
Xi −X

)2
σ2

has chi-squared distribution with n − 1 degrees of freedom, therefore the confidence
interval for the variance is defined as
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(
(n− 1)s2

χ2
α/2,n−1

,
(n− 1)s2

χ2
1−α/2,n−1

)

11 Hypotheses Tests for One Sample
A statistical hypothesis is a claim about a value of a parameter. We have two different types
of hypotheses, the null hypothesis and the alternative hypothesis. The null hypothesis is
the status quo, while the alternative hypothesis is the research hypothesis. The objective of
testing is to decide whether or not the null is valid. At the core, this process initially favors
the null hypothesis.

We need to consider three difference cases,
1. Ha : θ ̸= θ0
2. Ha : θ > θ0
3. Ha : θ < θ0

And we have two different types of errors:
1. A Type I Error is when the null is rejected but is true.
2. A Type II Error is when the null kept, but it is false.

We need a test statistic in order to determine the null’s validity. One easy way is to
standardize X.

Z =
X − µ

σ/
√
n

And we have three types, lower-tailed, upper-tailed and two-tailed.
We also need to consider proportions, in which case we standardize again.

Z =
p̂− p0√
p0(1−p0)

n

And then we use p-values, which is the probability that any z-test will occur on the
standard normal curve. The smaller the p-value, the more evidence there is that the null
hypothesis is false.

P − V alues =


1− Φ(z)

Φ(z)

2 [1− Φ(|z|)]

t tests work the same way.
When H0 is true, the p-values are distributed uniformly.

12 Inference Based on Two Samples
If we have two samples, X and Y , a natural estimator is µX − µY . The standard deviation
of this is

σX−Y =

√
σ2
1

m
+

σ2
2

n
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We can standardize this and perform hypothesis testing. Provided both m and n are
large, a confidence interval for this is

x− y ± zα/2

√
s21
m

+
s22
n

When we don’t have a lot of data, and the population distributions are both normal, our
standardized variable has t distribution with degrees of freedom estimated by

v =

(
s21
m +

s22
n

)2
(s21/m)

2

m−1 +
(s22/n)

2

n−1

And again, testing can be performed.

12 .1 Pooled t

If we know both distributions are normal and their variances are equal we can be a little
tricky.

We need to redefine our sample variance as

S2
p =

m− 1

m+ n− 2
· S2

1 +
n− 1

m+ n− 2
· S2

2

And now testing can be performed.

12 .2 F Test for Equality of Variances
Our test statistic defined as

F =
S2
1/σ

2
1

S2
2/σ

2
2

f =
s21
s22

has F distribution with v1 = m− 1 and v2 = n− 1.

12 .3 Inferences with Proportions
If we let

p̂1 = X/m p̂2 = Y/n

V (p̂1 − p̂2) =
p1q1
m

p2q2
n

13 Simple Linear Regression
Given a set of data we can create a linear regression model between the independent and
dependent variables using the ordinary least squares method.
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y = β̂0 + β̂1 · x

β̂1 =

∑
(xi − x) (yi − y)∑

(xi − x)
=

Sxy

Sxx
=

(
∑

xiyi − (
∑

xi) (
∑

yi)) /n(∑
x2
i − (

∑
xi)

2
)
/n

β̂0 = y − β̂1x

The fitted values are basically if we run x through our equation, and are denoted ŷ.
The residuals are the difference between the fitted values and the actual values. These are
estimates of the true error.

13 .1 Error Sum of Squares (Residual Sum of Squares)

SSE =
∑

(yi − ŷi)
2

σ2 =
SSE
n− 2

13 .2 Total Sum of Squares

SST = Syy =
∑

(yi − y)
2
=

(∑
y2i −

(∑
yi

)2)
/n

13 .3 Coefficient of Determination

r2 = 1− SSE
SST

The regression sum of squares is written

SSR = SST = SSE

13 .4 Inferences About β̂1

Based on our definitions and assumptions,

T =
β̂1 − β̂

S/
√
Sxx

has t distribution with n− 2 degrees of freedom.
We can test this and create a confidence interval.

13 .5 Predicted Values of y

The mean value of ŷ is our linear model result.
The variance of ŷ is

V (Ŷ ) = σ2

[
1

n
+

(x∗ − x)
2

Sxx

]
It has normal distribution.
A prediction interval for this value is
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ŷ ± tα/2,n−2

√
s2 + s2

Ŷ

14 Multiple Regression Analysis
This whole regression concept is extensible to more than one variable.

Y = β0 + β1x1 + · · ·+ βkxk + ϵ

This is best done with code.

14 .1 Adjusted r2

Instead of just using r2 as is, we need to adjust it.

R2
a = 1− SSE/(n− (k + 1))

SST/(n− 1)

14 .2 Mean Squared Error

σ2 = s2 = MSE =
SSE

n− (k + 1)

14 .3 Model Selection
We can test if our model is actually useful by after eliminating variables establishing our
null hypothesis that all variables we eliminated were supposed to be eliminated.

F =
SSR/k

SSE/(n− (k + 1))
=

MSR
MSE
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