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A Brief Introduction to the Collatz Problem

Let x be an arbitrary positive number, i.e. x € Z, x > 0. Define
f :Z — Z as the following.

F(x) = x/2 x=0 mod 2
3x+1 x=1 mod?2

Now define the sequence C, as the iteration of this function,
C.x,n—&—l - f( Cx,n)

The Collatz Conjecture states that for any input number x, C, will
go to one as n goes to infinity. In limit form,

lim G ,=1

n—oo
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Paul Erdos once said, “Mathematics is not yet ready for such
problems.”




Visualizing the Problem

Collatz was famous for visualizing this as a directed graph

Two different ways

Top Down - Pick a number and iterate

Bottom up - Make branches
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Top Down Algorithm

Initialize an array of edges called E.

Let i = 2.

Find the corresponding Collatz Sequence for i, C;.
Add edges to E of the form (C; ,, Cini1).

Let i =i+ 1 and go to 3.

g~ W N =

Table: Top Down Collatz Graph Algorithm
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Figure: Directed Graph of the Collatz Sequence from 1 to 20
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Bottom Up Algorithm

1 | Initialize an array of edges called E.

2 | Initialize an array of “start nodes”, called S.

3 | Set the depth D.

4 | Initialize a queue, Q, filled with (S;, D).

5 | Get (s, d) from the queue. If |Q| = 0, break.

6 | Set x; =2s, and x, = (2x — 1)/3.

7 | Add (x,s) to E.

8 | Ifs=4 mod 6, add (xp, s) to E, else do nothing.
9 | If d=0, goto 12, else continue.

10 | Add (x1,d — 1) to Q.

11 | If s=4 mod 6, add (x2, d — 1) to Q, else do nothing.
12 | Go to b

Table: Bottom Up Collatz Graph Algorithm
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Figure: Directed Graph of the Collatz Sequence from 1 to 10
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Figure: Directed Graph of the Collatz Sequence from 1 to 100
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Figure: Directed Graph of the Collatz Sequence from 1 to 1000/4@%\
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Figure: Directed Graph of the Collatz Sequence from 1 to 50
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What else can we look for?

e Maximal point achieved during iteration

e Histogram of exit times for the first million numbers
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Longest Chain

Longest Collatz sequence
Problem 14
The following iterative sequence is defined for the set of positive integers:

n — nl/2 (nis even)
n— 3n+1 (nis odd)

Using the rule above and starting with 13, we generate the following sequence:
13-40—-20-10->5->16->8—-4—-2->1

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz
Problem), it is thought that all starting numbers finish at 1.

Which starting number, under one million, produces the longest chain?

NOTE: Once the chain starts the terms are allowed to go above one million.

Figure: Problem 14 on ProjectEuler
This results in the number 837799 which has a chain 526 entries long.
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Cobwebs of Traditional Collatz Problem
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Figure: Cobweb of Several Collatz Sequences
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Stable Orbit?

We seem to have a super-stable attractor at 1, which matches our
Collatz Conjecture.

Cobwebs of Traditional Collatz Problem

70
Initial: 1

60 Initial: 2
Initial: 3

50 Initial: 4
Initial: 5

40 Initial: 6
Initial: 7

30 Initial: 8
Initial: 9

20

10 s

o BT
0 10 20 30 40 50 60 70

Figure: Cobweb of Several More Collatz Sequences
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But is it Chaotic?

Although no universally accepted mathematical definition of chaos
exists, a commonly used definition originally formulated by Robert L.

Devaney says that, to classify a dynamical system as chaotic, it must
have these properties:

@ it must be sensitive to initial conditions
@® it must be topologically mixing

© it must have dense periodic orbits
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Small Perturbations
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Figure: Initial Sensitivity
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Dense Orbits
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Figure: Dense Orbits from 1 to 300
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We can try to find these, but we immediately run into a problem.

24

Lyapunov Exponent Estimation o Iteration of i = 837799. 0 Sequence
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The same rules apply.

Initial =7

1 2 3 4 5

Initial = — 7

20
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All Known Integer Orbits
00

-05

-30 -25

-50

-100

Initial = —1

-20 -15

Initial =

-1.0

-05

0o

-150

200

250

-250

-200

-150

-100

-50

C

U Boulder Applied Math



Where do all Integers end up??
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Figure: Histogram of Orbits for all Points from —10, 000 to 10,000
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Generalization - To all Real Numbers

By noting that the two operations alternate, we can define a function
accordingly.

f(x) = %x cos? (gx) + (3x + 1) sin® (gx>
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Figure: Collatz Conjecture Real Extension
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Figure: Orbits on the Real Collatz Map
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Figure: Orbits on the Real Collatz Map
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Escaping?

Let’s find orbits that don't escape.

Initialize a space of possible orbits called O.

Set i =1.

Find the Collatz Sequence for O;.

If this sequence converges to an orbit, O; is stable.
Set i =i+ 1 and go to 3.

Gl W N

Table: Finding Stable Orbits

Only 10% of the densely sampled orbits shown previously converge!
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Fractals

This is well-behaved for complex numbers as well.

1
f(z) = Ezcos2 (gz> + (32 + 1) sin? (gz>
And since it shows this escaping behavior we can create a fractal in
the same way that Mandelbrot, etc. are created.
The next slide shows a portion from —1 — j to 2.5 + i.
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Final Thoughts

e It's a fascinating one-dimensional map
o | would hesitate to call it “chaotic” in the mathematical sense.

e |Is the conjecture true? Maybe... As far as | can tell yes.
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