3.36pt

Zoe Farmer

Funded by NSF EXTREEMS-QED

Parameterization and Analysis of Viscous Fluid Conduit Edges for Dispersive Hydrodynamics

University of Colorado, Boulder Advisors: Mark Hoefer, Michelle Maiden

March 5, 2016

Zoe Farmer www.dataleek.io

PACE

Funded by NSF EXTREEMS-QED

Zoe Farmer

Dispersive Hydrodynamics Lab

Our lab has four main facets

- Experimental Observations
- 2 Analytical Solutions
- 8 Numerical Solutions

Data Analysis (part of the NSF EXTREEMS-QED program) In order to have accurate results, we need to make sure we have accurate data.

Poor quality data yields poor quality results.

High Level Overview

- In our lab we examine the dynamics of a viscous fluid conduit.
- One large issue is that sometimes the conduits that are formed curve, and spiral around a central axis.
- We determine a method to measure the degree of spiraling, and to reject conduits based on this degree.

This is a **Data Quality Problem**.

What's our Environment?

Viscous Fluid Conduits

- Two viscous fluids, with inner forming axisymmetric conduit.
- Exterior Fluid: $\rho^{(e)}$ density and $\mu^{(e)}$ viscosity
- Interior Fluid: $\rho^{(i)}$ density and $\mu^{(i)}$ viscosity
- $\rho^{(i)} < \rho^{(e)} \Rightarrow$ buoyant flow
- $\mu^{(i)} << \mu^{(e)} \Rightarrow$ minimal drag
- Re $<< 1 \Rightarrow$ low Reynold's number

March 5, 2016

31

Experimental Setup

Data Collection

Numeric data results from edge detection on images.

March 5, 2016

What's the Issue?

- How *straight* is this conduit?
- Can we use data from this?
- Will our results be skewed?
- How do we quantify "straightness"?

Again, this is a **Data Quality Problem**.

PACE

- Given some single-trial from edge detection on conduit image, find a smoothing fit.
- Repeat for all trials.
- Plot the Curvature and Average Residual of each smoothed trial fit on the plane.
- Use Classification Algorithms to determine the space of non-curvy lines, i.e. the space of good quality data.

By averaging the left and right edges of our axisymmetric conduit we can find the centerline.

March 5, 2016

Regression Model

We use the regression model

$$h(x) = \beta_1 + \beta_2 x + \sum_{i=3}^n \beta_i f(x - x_i)$$

where $f(y) = \beta e^{-(sy)^2}$.

Zoe Farmer

Fit Parameter Determination

- The shape parameter is how wide each gaussian is.
- The count parameter is how many gaussians we use in the regression.
- To find our parameters we examine every fit's residuals, take their mean, and the find the standard deviation of that set. Our ideal parameters have low standard deviation.

• Examined using available data from the lab.

Sample Parameter Grid

Zoe Farmer

Fit Comparison

Now that we have a way to map our scattered points to a smooth line, we measure the quality of our collected data.

- Curvature Based on second derivative
- Noise Based on residuals. Included as if this is too high, it means the fit was poor, which can either indicate a blurry photo, or extreme curves.

For this application, defined as

$$\frac{1}{n \cdot \text{scale}} \cdot \sqrt{\int_a^b (s''(x))^2 \, dx}$$

which is a non-dimensionalized number based on pixels and scaling factors.

Noise

Residuals are defined as $y - \hat{y}$.

For this application, we define the noise as

$$\overline{|y-\hat{y}|}.$$

Zoe Farmer

March 5, 2016

Plot

Interpreting our Plot

- How do we map this to our conduit?
- What do the clusters tell us?
- Where do we go from here?

Zoe Farmer

Example Fits

March 5, 2016

A (Brief) Introduction to Machine Learning

- For this problem, we need to use a subset of Machine Learning referred to as **classification**.
- Classification problems are those in which we need to sort a dataset into different categories.
- This perfectly describes our situation.
- These algorithms require a training and testing dataset.
- Our results will improve over time.

k nearby points "vote" on the class of the point in question.

Nearest Neighbor Application

Zoe Farmer

March 5, 2016

Support Vector Machine Algorithm

Tries to find the optimal dividing line between classes.

March 5, 2016

Support Vector Machine with Linear Kernel

CU Boulder Applied Math March 5, 2016 25 / 31

Support Vector Machine with RBF Kernel

Zoe Farmer

March 5, 2016

Creates a "forest" of decision trees and classifies based on mean result.

March 5, 2016

Randomized Forest Application

March 5, 2016

- Poor quality data yields poor quality results.
- We now can ensure good quality data.

Moving Forward

- Now that we can ensure good quality data in our analysis we can move forward with some neat projects, like the Soliton Gas.
- A width problem instead of centerline.
- Where exactly is a specific soliton in a gas?
- Poisson?

- Mark Hoefer
- Michelle Maiden
- Peter Wills
- Funded by NSF EXTREEMS-QED