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High Level Overview

1 What are Conduits
2 What are solitons?
3 What’s a soliton gas?
4 Simulations...
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The Conduit

• Deformable pipe
• Gravity is down
• Rises because of

buoyancy
• Cross sectional area A
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Notes on Solitons
Our system is governed by the Conduit Equation,
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• Solitons are solitary travelling waves.
• Solitons are a special solution with decaying boundary conditions

to the conduit equation of the form

A(z , t) = f (ζ) = f (z − ct)

• Solitons have nonlinear characteristics, most notably their speed
is determined by their non-dimensionalized amplitude (a).

c = a2 − 2a2 ln a − 1
2a − a2 − 1
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Soliton - Soliton Interactions

• Two solitons can interact if a bigger one chases a smaller one.
• The solitons’ speed and amplitude are preserved save for a

phase-shift
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Particle-like Interactions
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What’s a Soliton Gas?

• A soliton can be thought of as a wave, but also as a particle
(similar to a photon)
• A gas can be thought of as a random collection of particles

interacting
• Thus a soliton gas is a random collection of solitons interacting
• Our system is one-dimensional, so we are generating a 1D gas
• A soliton gas has inherent random behavior dictated by two

random variables:
1 Frequency of solitons, Z
2 Soliton amplitude, A
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Plotting our Gas
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Properties of a Soliton Gas
• Soliton gas theory developed for simpler (integrable) systems.
• Soliton centers and amplitudes ⇒ compound Poisson process
• This means over long time, frequency of solitons, Z ∼ Poisson(λ),

and A is preserved
• Poisson Distribution: Number of events in interval with known

average rate and mutually independent events.

f (k ;λ) = λke−λ

k!

Kinetic Equation for a Dense Soliton Gas G. A. El and A. M. Kamchatnov, PRL 95, 2005
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Numerical Simulations

• Before running time-consuming experiments, useful to run
numerical simulations
• Spatial discretization: 4th-order finite differences with periodic

BC’s
• Temporal discretization: medium-order adaptive Runge-Kutta
(Matlab’s ode45.m)
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Finite Size Effects

How can we simulate an infinite conduit?
• Since we have finite size effects, eventually the simulation on [0, L]
will tend back to initial conditions. We want to stop before then.
• Therefore we’ll run two simulations simultaneously, one on [0, L]

and the other on [0, 2L].
• At each timestep we’ll check for a compound Poisson gas process
(“gas metric”) of each. If they differ significantly we restart with
new initial conditions.

D. S. Agafontsev and V. E. Zakharov, Nonlinearity 28, 2791 (2015)
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Plot of Initial Conditions
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Initial Conditions

• We have two random variables to simulate.
• Very first case is easy

• Z is one per minimum distance with exponentially small overlap.
• A is Unif ({2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6})

• After restart on 2L and 4L, need to create new IC’s
• Linear superposition does not hold
• Simulate with same gas metric as ended with.
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What is our Gas Metric?
• We’ve established that a soliton gas should have

Poisson-distributed solitons.
• This means that we can look at the problem as a Poisson-Point

Process, i.e. at any given point in space we should see points
appear over time.
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Meaning....

• Since this is a Poisson-Point
Process the gap between
points is exponentially
distributed.

f (x ;λ) = λe−λx

• Therefore the gas metric is a measure of how close our gaps of
our solitons are to the exponential distribution.
• We use the residual sum squared on the QQ-plot as a metric of
“distance” from one distribution to the other. This value is our
gas metric.
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QQ Plots
Quantiles
If you have a given dataset, a
quantile divides the dataset into
equally sized portions.
QQ Plots
Plotting quantiles of one
distribution vs. quantiles of
another.
Residuals
Distance from theoretical results to
experimental.
Residual Sum Squared

RSS =
n∑

i=1
(yi − f (xi))2
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Leveraging Parallelism

The big flaw so far is that we’re only looking at a single run of the
simulation. We could easily get bad results from only a single run.

Let’s instead consider running a hundred different simulations
simultaneously, or even a thousand. We have to adjust our simulation
to be able to handle running in a massively parallel environment such
as the CU supercomputer, Summit.
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Leveraging Parallelism

• If we want to run many simulations at once, this problem can be
described as embarrassingly parallel since the simulations don’t
need to talk to each other.
• So how can we design a multi-threaded program to take into

account the availability of tens or hundreds of threads?
• Can this be written safely so we don’t have any undefined

behavior?
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Multi-Threaded Design

Zoe Farmerwww.dataleek.io Ouroboros March 4, 2017 19 / 24

www.dataleek.io


CU Boulder Applied Math

Data Storage

SQLite database (2gb → 40mb from 2 experiments over 6 hours)
• simulations
• parameters
• t-values
• peaks
• gas metrics

sqlite> SELECT A.id, B.num
FROM simulations AS A
INNER JOIN (

SELECT simulationid, COUNT(*) AS num
FROM poissonness
GROUP BY simulationid) AS B

ON A.id = B.simulationid;

1|34
2|10
3|27
4|9
5|5
7|4
9|1
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Next Steps

• Large scale supercomputer simulations
• Experiments for validation of simulations
• Research paper
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Environment Details

Viscous Fluid Conduits
• Two viscous fluids, with inner

forming axisymmetric conduit.
• Exterior Fluid: ρ(e) density

and µ(e) viscosity
• Interior Fluid: ρ(i) density and
µ(i) viscosity
• ρ(i) < ρ(e) ⇒ buoyant flow
• µ(i) << µ(e) ⇒ minimal drag
• Re << 1⇒ low Reynold’s

number (implies Laminar flow)
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Integrable System: KDV

ut + uux + uxxx = 0
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